990 resultados para YTTRIUM MONOIODIDE
Resumo:
This study of sediments from the Cap Timiris Canyon demonstrates that geochemical data can provide reliable age-depth correlation even of highly turbiditic cores and attempts to improve our understanding of how turbidite emplacement is linked to climatic-related sea-level changes. The canyon incises the continental margin off NW Africa and is an active conduit for turbidity currents. In sediment cores from levee and intrachannel sites turbidites make up 6-42% of sediment columns. Age models were fitted to all studied cores by correlating downcore element data to dated reference cores, once turbidite beds had been removed from the dataset. These age models enabled us to determine turbidite emplacement times. The Cap Timiris Canyon has been active at least over the last 245 kyr, with turbidite deposition seemingly linked to stage boundaries and glacial stages. The highly turbiditic core from the intrachannel site postdates to ~15 kyr and comprises Holocene and late Pleistocene sediments. Turbidite deposition at this site was associated especially with the rapid sea-level rise at the Pleistocene/Holocene transition. During the Holocene, turbidity current activity decreased but did not cease.
Resumo:
The igneous geochemistry of lavas and breccias from the basement of Sites 790 and 791, and pumice clasts from the Pliocene-Pleistocene sedimentary section of Sites 788, 790, 791, and 793 were studied. Arc volcanism became silicic about 1.5 m.y. before the inception of rifting in the Sumisu Rift at 2 Ma, but eruption of these silicic magmas reflects changes in stress regime, especially during the last 130,000 yr, rather than crustal anatexis. Arc magmas have had a larger proportion of slab-derived components since the inception of rifting than before, but are otherwise similar. Rift basalts and rhyolites are derived from a different source than are arc andesites to rhyolites. The rift source has less slab-derived material and is an E-MORB-like source, in contrast to an N-MORB-type source overprinted with more slab-derived material beneath the arc. Rift magma types, in the form of rare pumice and lithic clasts, preceded the rift, and the earliest magmas that erupted in the rift already differed from those of the arc. The earliest large rift eruption produced an exotic explosion breccia ("mousse") despite eruption at >1800 mbsl. Although this rock type is attributed primarily to high magmatic water content, the clasts are more MORB-like in trace element and isotopic composition than are modern Mariana Trough basalts. After rifting began, arc volcanism continued to be predominantly silicic, with individual pumice deposits containing clasts that vary in composition by about 5 wt% SiO2, or about as much as in historical eruptions of submarine Izu Arc volcanoes. The overall variations in magma composition with time during the inception of arc rifting are broadly similar in the Sumisu Rift and Lau Basin, though newly tapped OIB-type mantle seems to be present earlier during basin formation in the Sumisu than Lau case.
Resumo:
Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were discovered in Berriasian to Valanginian hemipelagic (shelfal) to eupelagic (deep-sea) sediments of the Wombat Plateau (Site 761), Argo Abyssal Plain (Sites 261, 765), southern Exmouth Plateau (Site 763), and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with trachyandesitic to rhyolitic ash as parent material is proved by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, slender zircon), and rock fragments, and by a vitroclastic ultra-fabric (smectitized glass shards). For the Argo Abyssal Plain, we can distinguish four types of bentonitic claystones of characteristic waxy appearance: (1) pure smectite bentonites, white to light gray, sharp basal contacts, and a homogeneous cryptocrystalline smectite matrix, (2) thin, greenish-gray bentonitic claystones having sharp upper and lower contacts, (3) gray-green bentonitic claystones mottled with background sedimentation and a distinct amount of terrigenous and pelagic detrital material, and (4) brick-red smectitic claystones having diffuse sedimentary contacts and a doubtful volcanic origin. For the other drill sites, we can distinguish between (1) pure bentonitic claystones similar in appearance and chemical composition to Type 1 of the Argo Abyssal Plain (except for gradual basal contacts) and (2) impure bentonitic claystones containing textures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components resulting from resedimentation or bioturbation. The ash layers were progressively altered (smectitized) during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally, completely homogenized to a pure smectite matrix without obvious relict structures. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau and, via turbidity currents, into the adjacent abyssal plains. The Wombat and Argo abyssal plain bentonites are interpreted, at least in parts, as proximal or distal ash turbidites, respectively.
Resumo:
This paper reports the results of a preliminary palaeomagnetic investigation of the Admiralty Intrusives complex of northern Victoria Land, Antarctica. The samples were collected at Mt. Supernal and Inferno Peak, two pinions mainly formed of granodiorite and minor tonalite and emplaced at ab. 350 Ma at a high crustal level, as shown by amphibole geobarometric data and occurrence of miarolitic cavities. Microprobe and isothermal remanence analyses showed that magnetite. characterized by low coercivity and Curic point in the range 550-570 °C is the only primary ferromagnetic mineral. Stepwise thermaldemagnetization succeeded in isolatingamagnetization component. stable up to 530 °C. The virtual geomagnetic poles (VGPs) of the two plutons are different. That of Inferno Peak is consistent with the Australian palaeopoles of late Devonian-early Carboniferous age, whereas the location of the Mt. Supernal VGP probably results from the tectonic activity which affected the Ross Sea region during the Cenozoic.
Resumo:
On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.
Resumo:
We studied the systematics of Cl, F and H2O in Izu arc front volcanic rocks using basaltic through rhyolitic glass shards and melt inclusions (Izu glasses) from Oligocene to Quaternary distal fallout tephra. These glasses are low-K basalts to rhyolites that are equivalent to the Quaternary lavas of the Izu arc front (Izu VF). Most of the Izu glasses have Cl ~400-4000 ppm and F ~70-400 ppm (normal-group glasses). Rare andesitic melt inclusions (halogen-rich andesites; HRA) have very high abundances of Cl (~6600-8600 ppm) and F (~780-910 ppm), but their contents of incompatible large ion lithophile elements (LILE) are similar to the normal-group glasses. The preeruptive H2O of basalt to andesite melt inclusions in plagioclase is estimated to range from ~2 to ~10 wt% H2O. The Izu magmas should be undersaturated in H2O and the halogens at their preferred levels of crystallization in the middle to lower crust (~3 to ~11 kbar, ~820° to ~1200°C). A substantial portion of the original H2O is lost due to degassing during the final ascent to surface. By contrast, halogen loss is minor, except for loss of Cl from siliceous dacitic and rhyolitic compositions. The behavior of Cl, F and H2O in undegassed melts resembles the fluid mobile LILE (e.g.; K, Rb, Cs, Ba, U, Pb, Li). Most of the Cl (>99%), H2O (>95%) and F (>53%) in the Izu VF melts appear to originate from the subducting slab. At arc front depths, the slab fluid contains Cl = 0.94+/-0.25 wt%, F = 990+/-270 ppm and H2O = 25+/-7 wt%. If the subducting sediment and the altered basaltic crust were the only slab sources, then the subducted Cl appears to be almost entirely recycled at the Izu arc (~77-129%). Conversely, H2O (~13-22% recycled at arc) and F (~4-6% recycled) must be either lost during shallow subduction or retained in the slab to greater depths. If a seawater-impregnated serpentinite layer below the basaltic crust were an additional source of Cl and H2O, the calculated percentage of Cl and H2O recycled at arc would be lower. Extrapolating the Izu data to the total length of global arcs (~37000 km), the global arc outflux of fluid-recycled Cl and H2O at subduction zones amounts to Cl ~2.9-3.8 mln ton/yr and H2O ~70-100 mln ton/yr, respectively - comparable to previous estimates. Further, we obtain a first estimate of global arc outflux of fluid-recycled F of ~0.3-0.4 mln ton/yr. Despite the inherent uncertainties, our results support models suggesting that the slab becomes strongly depleted in Cl and H2O in subduction zones. In contrast, much of the subducted F appears to be returned to the deep mantle, implying efficient fractionation of Cl and H2O from F during the subduction process. However, if slab devolatilization produces slab fluids with high Cl/F (~9.5), slab melting will still produce components with low Cl/F ratios (~0.9), similar to those characteristic of the upper continental crust (Cl/F ~0.3-0.9).
Resumo:
We present new U-series disequilibrium and radiogenic isotope data for 7 mafic lavas from the Lesser Antilles arc. These are combined with published data in an internally consistent model that quantitatively estimates the amount of sediment and fluid added to the source of the Lesser Antilles arc system. Some lavas form an array consistent with bulk sediment addition (0.2-2%) whereas others appear to require addition of 0.4-2% sediment melt, particularly in the south of the arc. Evidence for both bulk sediment and sediment melt addition can be found within both the northern and central sections of the arc suggesting a thermal structure whereby the upper portions of the subducted sediment pile lie close to their solidus beneath much of the arc. Addition of up to 5% fluid derived from altered oceanic crust to these sediment enriched mantle wedge source regions can simulate the majority of the lavas on a plot of 207Pb/204Pb versus Ce/Pb. By taking into account the range in calculated wedge compositions and allowing for some mobility of Th in the fluid, the same model can also account for much of the observed range of U-Th-Ra disequilibria, especially if the eclogitic residue contains trace amounts of rutile. The implication of this more complex model is that the time scales for fluid addition and differentiation could be significantly shorter than those estimated in some previous studies.
Resumo:
Palaeoclimatic and paleoenvironmental high latitude records in the Southern Hemisphere are scarce compared to the northern counterpart. However, understanding global evolution of environmental systems during sudden climate changes is inseparable from an equivalent knowledge of both Hemispheres. In this context, a high-resolution study of lacustrine sediments from Laguna Potrok Aike, Santa Cruz province, Patagonia, Argentina, was conducted for the Lateglacial period using concurrent X-Ray Fluorescence (XRF) and Scanning electron microscope analyses. Peaks of Ca/Si and Mn, and occurrences of the green alga Phacotus lenticularis have been interpreted as variations in ventilation of the water column from 13.6 to 11.1 ka cal. BP. During this interval, mild climate conditions during the Younger Dryas are characterized by relatively weak westerlies favouring the formation of a stratified water body as indicated by preserved manganese and Ca/Si peaks and high Total Organic Carbon (TOC) values. In this environment, water in the epilimnion can reach sufficiently high temperature to allow P. lenticularis to grow. Colder conditions are marked by peaks in Ca without P. lenticularis and occur during the Antarctic Cold Reversal (ACR). In this Lateglacial interval, micropumices were also detected in large amount. Image analysis of thin sections allowed the counting and size measurement of detrital particles and micropumices separately. Micropumices significantly influence the iron and titanium content, hence preventing to use them as proxies of detrital input in this interval.
Resumo:
Ocean Drilling Program Legs 127 and 128 in the Yamato Basin of the Japan Sea, a Miocene-age back-arc basin in the western Pacific Ocean, recovered incompatible-element-depleted and enriched tholeiitic dolerites and basalts from the basin floor, which provide evidence of a significant sedimentary component in their mantle source. Isotopically, the volcanic rocks cover a wide range of compositions (e.g., 87Sr/86Sr = 0.70369 - 0.70503, 206Pb/204Pb = 17.65 - 18.36) and define a mixing trend between a depleted mantle (DM) component and an enriched component with the composition of EM II. At Site 797, the combined isotope and trace element systematics support a model of two component mixing between depleted, MORB-like mantle and Pacific pelagic sediments. A best estimate of the composition of the sedimentary component has been determined by analyzing samples of differing lithology from DSDP Sites 579 and 581 in the western Pacific, east of the Japan arc. The sediments have large depletions in the high field strength elements and are relatively enriched in the large-ion-lithophile elements, including Pb. These characteristics are mirrored, with reduced amplitudes, in Japan Sea enriched tholeiites and northeast Japan arc lavas, which strengthens the link between source enrichment and subducted sediments. However, Site 579/581 sediments have higher LILE/REE and lower HFSE/REE than the enriched component inferred fiom mixing trends at Site 797. Sub-arc devolatilization of the sediments is a process that will lower LILE/REE and raise HFSE/REE in the residual sediment, and thus this residual sediment may serve as the enriched component in the back-arc basalt source. Samples from other potential sources of an enriched, EM II-like component beneath Japan, such as the subcontinental lithosphere or crust, have isotopic compositions which overlap those of the Japan Sea tholeiites and are not "enriched" enough to be the EM II end-member.
Resumo:
Comprehensive geochronological and isotope-geochemical studies showed that the Late Quaternary Elbrus Volcano (Greater Caucasus) experienced long (approximately 200 ka) discrete evolution with protracted periods of igneous quiescence (approximately 50 ka) between large-scale eruptions. Volcanic activity of Elbrus is subdivided into three phases: Middle Neopleistocene (225-170 ka), Late Neopleistocene (110-70 ka), and Late Neopleistocene - Holocene (earlier than 35 ka). Petrogeochemical and isotope (Sr-Nd-Pb) signatures of Elbrus lavas point to their mantle-crustal origin. It was shown that hybrid parental magmas of the volcano formed due to mixing and/or contamination of deep-seated mantle melts by Paleozoic upper crustal material of the Greater Caucasus. Mantle reservoir that participated in genesis of Elbrus lavas as well as most other Neogene-Quaternary magmatic rocks of Caucasus was represented by the lower mantle "Caucasus" source. Primary melts generated by this source in composition corresponded to K-Na subalkali basalts with the following isotopic characteristics: 87Sr/86Sr = 0.7041+/-0.0001, e-Nd = +4.1+/-0.2, 147Sm/144Nd = 0.105-0.114, 206Pb/204Pb = 18.72, 207Pb/204Pb = 15.62, and 208Pb/204Pb = 38.78. Temporal evolution of isotope characteristics for lavas of the Elbrus Volcano is well described by a Sr-Nd mixing hyperbole between "Caucasus" source and estimated average composition of the Paleozoic upper crust of the Greater Caucasus. It was shown that, with time, proportions of mantle material in parental magmas of Elbrus gently increased: from ~60% at the Middle-Neopleistocene phase of activity to ~80% at the Late Neopleistocene - Holocene phase, which indicates an increase of activity of a deep-seated source at decreasing input of crustal melts or contamination with time. Unraveled evolution of the volcano with discrete eruption events, lacking signs of cessation of the Late Neopleistocene - Holocene phase, increasing contribution of the deep-seated mantle source in genesis of Elbrus lavas with time as deduced from isotope-geochemical data, as well as numerous geophysical and geological evidence indicate that Elbrus is a potentially active volcano and its eruptions may be resumed. Possible scenarios were proposed for evolution of the volcano, if its eruptive activity continued.
Resumo:
The Okinawa Trough (OT) in the East Asian continental margin is characterized by thick terrigenous sediment and ubiquitous volcanic-hydrothermal activities. In this study, the clays collected during IODP Expedition 331 to the middle OT (Iheya North Knoll) were analyzed for mineralogical and geochemical compositions. By comparing with the clays from the East China Sea shelf and surrounding rivers, we examine different clay origins. The hydrothermal field in the mid-OT is dominated by Mg-rich chlorite, while the recharge zone has clay mineral assemblages similar to the shelf and rivers, showing high content of illite, subordinate chlorite and kaolinite and scarce smectite. Compared to the terrigenous clays, the hydrothermal clays in the OT have high concentrations of Mg, Mn and Zr but low Fe, Na, K, Ca, Ba, Sr, P, Sc and Ti, while the hydrothermal clays in the mid-ocean ridge are relatively enriched in Fe and V and depleted in Al, Mg, Zr, Sc and Ti. Different fractionation patterns of rare earth elements also register in the terrigenous and hydrothermal clays, diagnostic of variable clay origins. We infer that the OT hydrothermal clay was primarily formed by the chemical alteration of detrital sediments subject to the hydrothermal fluids. The remarkably different compositions of hydrothermal clays between the sediment-rich back arc basin like OT and the sediment-starved ocean ridge suggest different physical and chemical processes of hydrothermal fluids and fluid-rock/sediment reactions under various geologic settings.