964 resultados para X inactive specific transcript protein
Resumo:
The aim of this validation study was to assess the measurement properties of the CECA (Spanish acronym for the Specific Questionnaire for Condylomata Acuminata) in patients with anogenital condylomas. A total of 247 patients aged > 18 years completed the questionnaire on 2 occasions as well as the Dermatology Life Quality Index (DLQI). The CECA questionnaire showed good internal consistency (Cronbach's alpha values of 0.86 and 0.91 in the emotional and sexual activity dimensions) and good testretest reliability (intraclass correlation coefficient 0.76 emotional dimension, 0.82 sexual activity dimension). Patients with de novo lesions and those with more extensive lesions and larger number of warts showed poorer health-related quality of life. CECA and DLQI scores correlated moderately. Patients whose lesions cleared at follow-up or with a reduction of >or= 50% showed a better improvement of health-related quality of life. The CECA questionnaire is a valid, reliable and sensitive tool for the assessment of health-related quality of life in patients with anogenital warts.
Resumo:
Despite the high prevalence of colon cancer in the world and the great interest in targeted anti-cancer therapy, only few tumor-specific gene products have been identified that could serve as targets for the immunological treatment of colorectal cancers. The aim of our study was therefore to identify frequently expressed colon cancer-specific antigens. We performed a large-scale analysis of genes expressed in normal colon and colon cancer tissues isolated from colorectal cancer patients using massively parallel signal sequencing (MPSS). Candidates were additionally subjected to experimental evaluation by semi-quantitative RT-PCR on a cohort of colorectal cancer patients. From a pool of more than 6000 genes identified unambiguously in the analysis, we found 2124 genes that were selectively expressed in colon cancer tissue and 147 genes that were differentially expressed to a significant degree between normal and cancer cells. Differential expression of many genes was confirmed by RT-PCR on a cohort of patients. Despite the fact that deregulated genes were involved in many different cellular pathways, we found that genes expressed in the extracellular space were significantly over-represented in colorectal cancer. Strikingly, we identified a transcript from a chromosome X-linked member of the human endogenous retrovirus (HERV) H family that was frequently and selectively expressed in colon cancer but not in normal tissues. Our data suggest that this sequence should be considered as a target of immunological interventions against colorectal cancer.
Resumo:
OBJECTIVES: Methicillin resistance in staphylococci is mediated by the mecA gene, which is carried on the staphylococcal cassette chromosome mec (SCCmec). SCCmec is responsible for vertical and horizontal transfer of methicillin resistance. Horizontal transfer implies first SCCmec excision from the chromosome. Site-specific excision is catalysed by the Ccr recombinases, which are encoded by ccrAB genes located on the cassette. The aim of this study is to determine the promoter activity of ccrAB genes in individual cells of methicillin-resistant Staphylococcus aureus (N315, COL and MW2) and Staphylococcus epidermidis (RP62A). One mutant cured of its SCCmec (N315EX) was also used. Exposure to various stresses was included in the study. METHODS: For each strain, translational promoter-green fluorescent protein (gfp) fusions were used to assess the levels of ccr promoter activity in individual cells. Analyses were performed using epifluorescence microscopy and flow cytometry. RESULTS: ccr promoter activity was observed in only a small percentage of cell populations. This 'bistable' phenotype was strain dependent (GFP was expressed in N315 and RP62A, but not in COL and MW2) and growth dependent (GFP-expressing cells decreased from approximately 3% to 1% between logarithmic and stationary growth phases). The ccr promoter of strain N315 displayed normal promoter activity when expressed in SCCmec-negative N315EX. Likewise, the ccr promoter of strain COL (which was inactive in COL) showed normal N315-like activity when transformed into N315 and N315EX. CONCLUSIONS: SCCmec excision operates through bistability, favouring a small fraction of cells to 'sacrifice' their genomic islands for transfer, while the rest of the population remains intact. Determinants responsible for the activity of the ccr promoter were not located on SCCmec, but were elsewhere on the genome. Thus, the staphylococcal chromosome plays a key role in determining SCCmec stability and transferability.
Resumo:
The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3'UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT-qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.
Resumo:
The actual geographic distribution of the two sibling mouse-eared bat species Myotis myotis and Myotis blythii, which occur widely sympatrically in the western Palaearctic region, remains largely controversial. This concerns particularly the specific attribution of marginal populations from the Mediterranean islands and from adjacent areas of North Africa and Asia, which are morphologically intermediate between continental M. myotis and M. blythii from Europe. This study attempts to clarify this question by using four different approaches: cranial morphology, external morphology, genetics and trophic ecology. The three latter methods show unambiguously that North Africa, Malta, Sardinia and Corsica are presently inhabited by monospecific populations of M. myotis. In contrast, cranial morphometrics do not yield conclusive results. These results contradict all recent studies, which attribute North African and Maltese mouse-eared bats to M. blythii and consider that Sardinia and Corsica harbour sympatric populations of the two species. As concerns south-eastern populations, doubts are also expressed about the attribution of the subspecific taxon omari which may actually refer to M. myotis instead of M. blythii. Protein electrophoresis is presently the only absolute method available for determining M. myotis and M. blythii throughout their distribution ranges. However, species identification may be approached by relying on less sophisticated morphometrical methods as presented in this study. Species-specific habitat specializations are probably responsible for the differences observed between the geographic distributions of M. myotis and M. blythii, as they provide a logical groundwork for a coherent model of speciation for these two bat species.
Resumo:
The life cycle of the protozoan Trypanosoma cruzi exposes it to several environmental stresses in its invertebrate and vertebrate hosts. Stress conditions are involved in parasite differentiation, but little is known about the stress response proteins involved. We report here the first characterization of stress-induced protein-1 (STI-1) in T. cruzi (TcSTI-1). This co-chaperone is produced in response to stress and mediates the formation of a complex between the stress proteins HSP70 and HSP90 in other organisms. Despite the similarity of TcSTI-1 to STI-1 proteins in other organisms, its expression profile in response to various stress conditions, such as heat shock, acidic pH or nutrient starvation, is quite different. Neither polysomal mRNA nor protein levels changed in exponentially growing epimastigotes cultured under any of the stress conditions studied. Increased levels of TcSTI-1 were observed in epimastigotes subjected to nutritional stress in the late growth phase. Co-immunoprecipitation assays revealed an association between TcSTI-1 and TcHSP70 in T. cruzi epimastigotes. Immunolocalization demonstrated that TcSTI-1 was distributed throughout the cytoplasm and there was some colocalization of TcSTI-1 and TcHSP70 around the nucleus. Thus, TcSTI-1 associates with TcHSP70 and TcSTI-1 expression is induced when the parasites are subjected to stress conditions during specific growth phase.
Evaluation of two long synthetic merozoite surface protein 2 peptides as malaria vaccine candidates.
Resumo:
Merozoite surface protein 2 (MSP2) is a promising vaccine candidate against Plasmodium falciparum blood stages. A recombinant 3D7 form of MSP2 was a subunit of Combination B, a blood stage vaccine tested in the field in Papua New Guinea. A selective effect in favour of the allelic family not represented by the vaccine argued for a MSP2 vaccine consisting of both dimorphic variants. An alternative approach to recombinant manufacture of vaccines is the production of long synthetic peptides (LSP). LSP exceeding a length of well over 100 amino acids can now be routinely synthesized. Synthetic production of vaccine antigens cuts the often time-consuming steps of protein expression and purification short. This considerably reduces the time for a candidate to reach the phase of clinical trials. Here we present the evaluation of two long synthetic peptides representing both allelic families of MSP2 as potential vaccine candidates. The constructs were well recognized by human immune sera from different locations and different age groups. Furthermore, peptide-specific antibodies in human immune sera were associated with protection from clinical malaria. The synthetic fragments share major antigenic properties with native MSP2. Immunization of mice with these antigens yielded high titre antibody responses and monoclonal antibodies recognized parasite-derived MSP2. Our results justify taking these candidate poly-peptides into further vaccine development.
Resumo:
Trypanosoma cruzi, a protozoan parasite that causes Chagas disease, exhibits unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes, RNA editing and trans-splicing. In the absence of mechanism controlling transcription initiation, organized subsets of T. cruzi genes must be post-transcriptionally co-regulated in response to extracellular signals. The mechanisms that regulate stage-specific gene expression in this parasite have become much clearer through sequencing its whole genome as well as performing various proteomic and microarray analyses, which have demonstrated that at least half of the T. cruzi genes are differentially regulated during its life cycle. In this review, we attempt to highlight the recent advances in characterising cis and trans-acting elements in the T. cruzi genome that are involved in its post-transcriptional regulatory machinery.
Resumo:
The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.
Resumo:
Since Staphylococcus aureus expresses multiple pathogenic factors, studying their individual roles in single-gene-knockout mutants is difficult. To circumvent this problem, S. aureus clumping factor A (clfA) and fibronectin-binding protein A (fnbA) genes were constitutively expressed in poorly pathogenic Lactococcus lactis using the recently described pOri23 vector. The recombinant organisms were tested in vitro for their adherence to immobilized fibrinogen and fibronectin and in vivo for their ability to infect rats with catheter-induced aortic vegetations. In vitro, both clfA and fnbA increased the adherence of lactococci to their specific ligands to a similar extent as the S. aureus gene donor. In vivo, the minimum inoculum size producing endocarditis in > or =80% of the rats (80% infective dose [ID80]) with the parent lactococcus was > or =10(7) CFU. In contrast, clfA-expressing and fnbA-expressing lactococci required only 10(5) CFU to infect the majority of the animals (P < 0.00005). This was comparable to the infectivities of classical endocarditis pathogens such as S. aureus and streptococci (ID80 = 10(4) to 10(5) CFU) in this model. The results confirmed the role of clfA in endovascular infection, but with a much higher degree of confidence than with single-gene-inactivated staphylococci. Moreover, they identified fnbA as a critical virulence factor of equivalent importance. This was in contrast to previous studies that produced controversial results regarding this very determinant. Taken together, the present observations suggest that if antiadhesin therapy were to be developed, at least both of the clfA and fnbA products should be blocked for the therapy to be effective.
Resumo:
BACKGROUND: Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). METHODS AND FINDINGS: We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. CONCLUSIONS: Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.
Resumo:
Interleukin (IL) 18 is a potent pro-inflammatory Th1 cytokine that exerts pleiotropic effector functions in both innate and acquired immune responses. Increased IL-18 production during acute rejection has been reported in experimental heart transplantation models and in kidney transplant recipients. IL-18-binding protein (IL-18BP) binds IL-18 with high affinity and neutralizes its biologic activity. We have analyzed the efficacy of an adenoviral vector expressing an IL-18BP-Ig fusion protein in a rat model of heart transplantation. IL-18BP-Ig gene transfer into Fisher (F344) rat donor hearts resulted in prolonged graft survival in Lewis recipients (15.8 +/- 1.4 days vs. 10.3 +/- 2.5 and 10.1 +/- 2.1 days with control virus and buffer solution alone, respectively; P < 0.001). Immunohistochemical analysis revealed decreased intra-graft infiltrates of monocytes/macrophages, CD4(+), CD8alpha(+) and T-cell receptor alphabeta(+) cells after IL-18BP-Ig versus mock gene transfer (P < 0.05). Real-time reverse transcriptase polymerase chain reaction analysis showed decreased cytokine transcripts for the RANTES chemokine and transforming growth factor-beta after IL-18BP-Ig gene transfer (P < 0.05). IL-18BP-Ig gene transfer attenuates inflammatory cell infiltrates and prolongs cardiac allograft survival in rats. These results suggest a contributory role for IL-18 in acute rejection. Further studies aiming at defining the therapeutic potential of IL-18BP are warranted.
Resumo:
A peptide (SmB2LJ; r175-194) that belongs to a conserved domain from Schistosoma mansoni SmATPDase 2 and is shared with potato apyrase, as predicted by in silico analysis as antigenic, was synthesised and its immunostimulatory property was analysed. When inoculated in BALB/c mice, this peptide induced high levels of SmB2LJ-specific IgG1 and IgG2a subtypes, as detected by enzyme linked immunosorbent assay. In addition, dot blots were found to be positive for immune sera against potato apyrase and SmB2LJ. These results suggest that the conserved domain r175-194 from the S. mansoni SmATPDase 2 is antigenic. Western blots were performed and the anti-SmB2LJ antibody recognised in adult worm (soluble worm antigen preparation) or soluble egg antigen antigenic preparations two bands of approximately 63 and 55 kDa, molecular masses similar to those predicted for adult worm SmATPDase 2. This finding strongly suggests the expression of this same isoform in S. mansoni eggs. To assess localisation of SmATPDase 2, confocal fluorescence microscopy was performed using cryostat sections of infected mouse liver and polyclonal antiserum against SmB2LJ. Positive reactions were identified on the external surface from the miracidium in von Lichtenberg's envelope and, in the outer side of the egg-shell, showing that this soluble isoform is secreted from the S. mansoni eggs.
Resumo:
Myocardial angiogenesis induction with vascular growth factors constitutes a potential strategy for patients whose coronary artery disease is refractory to conventional treatment. The importance of angiogenesis in bone formation has led to the development of growth factors derived from bovine bone protein. Twelve pigs (mean weight, 73 +/- 3 kg) were chosen for the study. In the first group (n = 6, growth factor group) five 100 micrograms boluses of growth factors derived from bovine bone protein, diluted in Povidone 5%, were injected in the lateral wall of the left ventricle. In the second group (n = 6, control group), the same operation was performed but only the diluting agent was injected. All the animals were sacrificed after 28 days and the vascular density of the left lateral wall (expressed as the number of vascular structures per mm2) as well as the area of blood vessel profiles per myocardial area analysed were determined histologically with a computerised system. The growth factor group had a capillary density which was significantly higher than that of the control group: 12.6 +/- 0.9/mm2 vs 4.8 +/- 0.5/mm2 (p < 0.01). The same holds true for the arteriolar density: 1 +/- 0.2/mm2 vs 0.3 +/- 0.1/mm2 (p < 0.01). The surface ratios of blood vessel profiles per myocardial area were 4900 +/- 800 micron 2/mm2 and 1550 +/- 400 micron 2/mm2 (p < 0.01) respectively. In this experimental model, bovine bone protein derived growth factors induce a significant neovascularisation in healthy myocardium, and appear therefore as promising candidates for therapeutic angiogenesis.
Resumo:
The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (λmax = 730 nm) and inactive Pr (λmax = 660 nm) forms in a red/far-red-dependent fashion and regulates, as molecular switch, many aspects of light-dependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein-protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB-yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photoreceptor, but light-independent relaxation of the phyB(Ser86Asp) Pfr into Pr, also termed dark reversion, is strongly enhanced both in vivo and in vitro. Faster dark reversion attenuates red light-induced nuclear import and interaction of phyB(Ser86Asp)-YFP Pfr with the negative regulator PHYTOCHROME INTERACTING FACTOR3 compared with phyB-green fluorescent protein. These data suggest that accelerated inactivation of the photoreceptor phyB via phosphorylation of Ser-86 represents a new paradigm for modulating phytochrome-controlled signaling.