996 resultados para Word Classification
Resumo:
Various complex oscillatory processes are involved in the generation of the motor command. The temporal dynamics of these processes were studied for movement detection from single trial electroencephalogram (EEG). Autocorrelation analysis was performed on the EEG signals to find robust markers of movement detection. The evolution of the autocorrelation function was characterised via the relaxation time of the autocorrelation by exponential curve fitting. It was observed that the decay constant of the exponential curve increased during movement, indicating that the autocorrelation function decays slowly during motor execution. Significant differences were observed between movement and no moment tasks. Additionally, a linear discriminant analysis (LDA) classifier was used to identify movement trials with a peak accuracy of 74%.
Resumo:
This paper aims to assess the necessity of updating the intensity-duration-frequency (IDF) curves used in Portugal to design building storm-water drainage systems. A comparative analysis of the design was performed for the three predefined rainfall regions in Portugal using the IDF curves currently in use and estimated for future decades. Data for recent and future climate conditions simulated by a global and regional climate model chain are used to estimate possible changes of rainfall extremes and its implications for the drainage systems. The methodology includes the disaggregation of precipitation up to subhourly scales, the robust development of IDF curves, and the correction of model bias. Obtained results indicate that projected changes are largest for the plains in southern Portugal (5–33%) than for mountainous regions (3–9%) and that these trends are consistent with projected changes in the long-term 95th percentile of the daily precipitation throughout the 21st century. The authors conclude there is a need to review the current precipitation regime classification and change the new drainage systems towards larger dimensions to mitigate the projected changes in extreme precipitation.
Resumo:
Information was collated on the seed storage behaviour of 67 tree species native to the Amazon rainforest of Brazil; 38 appeared to show orthodox, 23 recalcitrant and six intermediate seed storage behaviour. A double-criteria key based on thousand-seed weight and seed moisture content at shedding to estimate likely seed storage behaviour, developed previously, showed good agreement with the above classifications. The key can aid seed storage behaviour identification considerably.
Resumo:
This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.
Resumo:
This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.
Resumo:
Purpose– The purpose of this study is to address a recent call for additional research on electronic word‐of‐mouth (eWOM). In response to this call, this study draws on the social network paradigm and the uses and gratification theory (UGT) to propose and empirically test a conceptual framework of key drivers of two types of eWOM, namely in‐group and out‐of‐group. Design/methodology/approach– The proposed model, which examines the impact of usage motivations on eWOM in‐group and eWOM out‐of‐group, is tested in a sample of 302 internet users in Portugal. Findings– Results from the survey show that the different drivers (i.e. mood‐enhancement, escapism, experiential learning and social interaction) vary in terms of their impact on the two different types of eWOM. Surprisingly, while results show a positive relationship between experiential learning and eWOM out‐of‐group, no relationship is found between experiential learning and eWOM in‐group. Research limitations/implications– This is the first study investigating the drivers of both eWOM in‐group and eWOM out‐of‐group. Additional research in this area will contribute to the development of a general theory of eWOM. Practical implications– By understanding the drivers of different eWOM types, this study provides guidance to marketing managers on how to allocate resources more efficiently in order to achieve the company's strategic objectives. Originality/value– No published study has investigated the determinants of these two types of eWOM. This is the first study offering empirical considerations of how the various drivers differentially impact eWOM in‐group and eWOM out‐of‐group.
Resumo:
This paper describes the methodology used to compile a corpus called MorphoQuantics that contains a comprehensive set of 17,943 complex word types extracted from the spoken component of the British National Corpus (BNC). The categorisation of these complex words was derived primarily from the classification of Prefixes, Suffixes and Combining Forms proposed by Stein (2007). The MorphoQuantics corpus has been made available on a website of the same name; it lists 554 word-initial and 281 word-final morphemes in English, their etymology and meaning, and records the type and token frequencies of all the associated complex words containing these morphemes from the spoken element of the BNC, together with their Part of Speech. The results show that, although the number of word-initial affixes is nearly double that of word-final affixes, the relative number of each observed in the BNC is very similar; however, word-final affixes are more productive in that, on average, the frequency with which they attach to different bases is three times that of word-initial affixes. Finally, this paper considers how linguists, psycholinguists and psychologists may use MorphoQuantics to support their empirical work in first and second language acquisition, and clinical and educational research.
Resumo:
The aim of the present study was to investigate whether the saliency effect for word beginnings reported in children with Dyslexia (Marshall & van der Lely, 2009) can be found also in TD children. Thirty-four TD Italian children aged 8-10 completed two specifically designed tasks: a production task and a perception task. Both tasks used nonwords containing clusters consisting of plosive plus liquid (eg. pl). Clusters could be either in a stressed or in an unstressed syllable, and could be either in initial position (first syllable) or in medial position (second syllable). In the production task children were asked to repeat the non-words. In the perception task, the children were asked to discriminate between two nonwords differing in one phoneme belonging to a cluster by reporting whether two repetitions were the same or different. Results from the production task showed that children are more accurate in repeating stressed than unstressed syllables, but there was no difference with respect to position of the cluster. Results from the perception task showed that children performed more accurately when discriminating word initial contrasts than when discriminating word medial contrasts, especially if the cluster was unstressed. Implications of this finding for clinical assessments are discussed.
Resumo:
Advances in hardware and software technologies allow to capture streaming data. The area of Data Stream Mining (DSM) is concerned with the analysis of these vast amounts of data as it is generated in real-time. Data stream classification is one of the most important DSM techniques allowing to classify previously unseen data instances. Different to traditional classifiers for static data, data stream classifiers need to adapt to concept changes (concept drift) in the stream in real-time in order to reflect the most recent concept in the data as accurately as possible. A recent addition to the data stream classifier toolbox is eRules which induces and updates a set of expressive rules that can easily be interpreted by humans. However, like most rule-based data stream classifiers, eRules exhibits a poor computational performance when confronted with continuous attributes. In this work, we propose an approach to deal with continuous data effectively and accurately in rule-based classifiers by using the Gaussian distribution as heuristic for building rule terms on continuous attributes. We show on the example of eRules that incorporating our method for continuous attributes indeed speeds up the real-time rule induction process while maintaining a similar level of accuracy compared with the original eRules classifier. We termed this new version of eRules with our approach G-eRules.
Resumo:
Advances in hardware technologies allow to capture and process data in real-time and the resulting high throughput data streams require novel data mining approaches. The research area of Data Stream Mining (DSM) is developing data mining algorithms that allow us to analyse these continuous streams of data in real-time. The creation and real-time adaption of classification models from data streams is one of the most challenging DSM tasks. Current classifiers for streaming data address this problem by using incremental learning algorithms. However, even so these algorithms are fast, they are challenged by high velocity data streams, where data instances are incoming at a fast rate. This is problematic if the applications desire that there is no or only a very little delay between changes in the patterns of the stream and absorption of these patterns by the classifier. Problems of scalability to Big Data of traditional data mining algorithms for static (non streaming) datasets have been addressed through the development of parallel classifiers. However, there is very little work on the parallelisation of data stream classification techniques. In this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time adaptive and parallel methodology for scalable data stream classification tasks.
Resumo:
Three coupled knowledge transfer partnerships used pattern recognition techniques to produce an e-procurement system which, the National Audit Office reports, could save the National Health Service £500 m per annum. An extension to the system, GreenInsight, allows the environmental impact of procurements to be assessed and savings made. Both systems require suitable products to be discovered and equivalent products recognised, for which classification is a key component. This paper describes the innovative work done for product classification, feature selection and reducing the impact of mislabelled data.
Resumo:
We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.
Resumo:
Iconicity is the non-arbitrary relation between properties of a phonological form and semantic content (e.g. “moo”, “splash”). It is a common feature of both spoken and signed languages, and recent evidence shows that iconic forms confer an advantage during word learning. We explored whether iconic forms conferred a processing advantage for 13 individuals with aphasia following left-hemisphere stroke. Iconic and control words were compared in four different tasks: repetition, reading aloud, auditory lexical decision and visual lexical decision. An advantage for iconic words was seen for some individuals in all tasks, with consistent group effects emerging in reading aloud and auditory lexical decision. Both these tasks rely on mapping between semantics and phonology. We conclude that iconicity aids spoken word processing for individuals with aphasia. This advantage may be due to a stronger connection between semantic information and phonological forms.
Resumo:
Involuntary musical imagery (INMI) is the subject of much recent research interest. INMI covers a number of experience types such as musical obsessions and musical hallucinations. One type of experience has been called earworms, for which the literature provides a number of definitions. In this paper we consider the origins of the term earworm in the German language literature and compare that usage with the English language literature. We consider the published literature on earworms and conclude that there is merit in distinguishing between earworms and other types of types of involuntary musical imagery described in the scientific literature: e.g. musical hallucinations, musical obsessions. We also describe other experiences that can be considered under the term INMI. The aim of future research could be to ascertain similarities and differences between types of INMI with a view to refining the classification scheme proposed here.