970 resultados para Wide-Area Measurements
Resumo:
Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminiferal records of a 3.5 m long gravity core from Ameralik Fjord, southern West Greenland, is used for reconstructing late-Holocene environmental changes in this area. The changes are linked to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core records the last 4400 years and covers the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4 3.2 ka BP) is characterized by high accumulation rates of fine (silty) sediments related to strong meltwater discharge from the Inland Ice. The HTM benthic foraminiferal fauna demonstrates the presence of well-ventilated, saline bottom water originating from inflow of subsurface West Greenland Current water of Atlantic (Irminger Sea) origin. The hydrographic conditions were further characterized by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions with a decreased meltwater discharge and more widespread sea-ice cover in the fjord.
Resumo:
Distributional patterns of glaciological parameters at the Colle Gnifetti core drilling site are described and their interrelationships are brietly discussed. Observations within a stake network established in 1980 furnish information about snow accumulation (short term balance), submergence velocity of ice tlow (long term balance), ram hardness (melt layer stratigraphy), and firn temperature. In addition, a numerical model was used to estimate local variations of available radiant energy. Melt layer formation is considerably more intensive on the south facing parts of the firn saddie where incoming radiation is high. These melt layers seem to effectively protect some of the fallen snow from wind erosion. As a result, balance ist up to one order of magnitude larger on south facing slopes. Heat applied to the surface is therefore positively correlated with balance, whereas the relation between solar radiation and firn temperature is less dear. Distributional patterns of submergence velocity confirm that the observed spatial variability of surface balance is representative for longer time periods and greatly intluences the time scale and the stratigraphy of firn and ice cores from Colle Gnifetti.
Resumo:
Development plays an important part in shaping adult morphology and morphological disparity, yet its influence on evolutionary processes is seldom explored because of a lack of preservation of ontogenetic stages in the fossil record. By preserving their entire ontogenetic history within their test, and with the advent of high-resolution imaging techniques, planktic foraminifera allow us to investigate the influence of developmental constraints on disparity. Using Synchrotron radiation X-ray tomographic microscopy (SRXTM), we reconstruct the ontogenetic progression of seven species across several of the major morphotypic groups of planktic foraminifera, including morphotypes of a species exhibiting high phenotypic plasticity and closely related pseudo-cryptic sister-taxa. We show differences in growth patterns between the globigerinid species, which appear more tightly regulated within the framework of isometry from the neanic stage, and the globorotaliid species, whose adult stages present allometric trends. Morphological change through ontogeny results in a change in surface area to volume ratios. Different metabolic processes therefore dominate at different stages of ontogeny, changing the vulnerability of the organism to environmental influences over growth, from factors affecting diffusion rates in the juvenile to those affecting energy supply in the adult. These findings identify some of the parameters within which evolutionary mechanisms have to act.
Resumo:
At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 µGal for 2003 and 3.5 µGal for 2005. The resulting time-lapse uncertainty is 5.3 µGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530kg/m**3. Uncertainty in determining the average density is estimated to be ±65 kg/m**3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.
Resumo:
Geophysical data acquired using R/V Polarstern constrain the structure and age of the rifted oceanic margin of West Antarctica. West of the Antipodes Fracture Zone, the 145 km wide continent-ocean transition zone (COTZ) of the Marie Byrd Land sector resembles a typical magma-poor margin. New gravity and seismic reflection data indicates initial continental crust of thickness 24 km, that was stretched 90 km. Farther east, the Bellingshausen sector is broad and complex with abundant evidence for volcanism, the COTZ is ~670 km wide, and the nature of crust within the COTZ is uncertain. Margin extension is estimated to be 106-304 km in this sector. Seafloor magnetic anomalies adjacent to Marie Byrd Land near the Pahemo Fracture Zone indicate full-spreading rate during c33-c31 (80-68 Myr) of 60 mm/yr, increasing to 74 mm/yr at c27 (62 Myr), and then dropping to 22 mm/yr by c22 (50 Myr). Spreading rates were lower to the west. Extrapolation towards the continental margin indicates initial oceanic crust formation at around c34y (84 Myr). Subsequent motion of the Bellingshausen plate relative to Antarctica (84-62 Myr) took place east of the Antipodes Fracture Zone at rates <40 mm/yr, typically 5-20 mm/yr. The high extension rate of 30-60 mm/yr during initial margin formation is consistent with steep and symmetrical margin morphology, but subsequent motion of the Bellingshausen plate was slow and complex, and modified rift morphology through migrating deformation and volcanic centers to create a broad and complex COTZ.
Resumo:
Includes bibliographical references (p. 53-55).
Resumo:
Contains data similar to that found in the County and City Databook, but on the state and MSA (Metropolitan Statistical Areas) levels.
Resumo:
Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.
Resumo:
The phase equilibria in the Fe-Zn-O system in the range 900-1580degreesC in air have been experimentally studied using equilibration and quenching techniques. The compositions of the phases at equilibrium were determined using electron probe X-ray microanalysis (EPMA). The ferrous and ferric bulk iron concentrations were measured with a wet chemical analysis using the ammonium metavanadate technique. X-ray powder diffraction analysis (XRD) was used to characterise the phases. Iron oxide dissolved in zincite was found to be present principally in the ferric form. The XRD analysis and the composition measurements both indicate that zincite is the only phase stable in the ZnO-rich area in the range of conditions investigated. The solubility of the iron oxide in zincite rapidly increases at temperatures above 1200degreesC; the morphology of the zincite crystals also sharply changes between 1200 and 1300degreesC from rounded to plate-like crystals. The plate-like zincite forms a refractory network-the type of microstructure beneficial to the Imperial Smelting Process (ISP) sinter performance. The software program FactSage with a thermodynamically optimised database was used to predict phase equilibria in the Fe-Zn-O system.
Resumo:
In this paper we apply a new method for the determination of surface area of carbonaceous materials, using the local surface excess isotherms obtained from the Grand Canonical Monte Carlo simulation and a concept of area distribution in terms of energy well-depth of solid–fluid interaction. The range of this well-depth considered in our GCMC simulation is from 10 to 100 K, which is wide enough to cover all carbon surfaces that we dealt with (for comparison, the well-depth for perfect graphite surface is about 58 K). Having the set of local surface excess isotherms and the differential area distribution, the overall adsorption isotherm can be obtained in an integral form. Thus, given the experimental data of nitrogen or argon adsorption on a carbon material, the differential area distribution can be obtained from the inversion process, using the regularization method. The total surface area is then obtained as the area of this distribution. We test this approach with a number of data in the literature, and compare our GCMC-surface area with that obtained from the classical BET method. In general, we find that the difference between these two surface areas is about 10%, indicating the need to reliably determine the surface area with a very consistent method. We, therefore, suggest the approach of this paper as an alternative to the BET method because of the long-recognized unrealistic assumptions used in the BET theory. Beside the surface area obtained by this method, it also provides information about the differential area distribution versus the well-depth. This information could be used as a microscopic finger-print of the carbon surface. It is expected that samples prepared from different precursors and different activation conditions will have distinct finger-prints. We illustrate this with Cabot BP120, 280 and 460 samples, and the differential area distributions obtained from the adsorption of argon at 77 K and nitrogen also at 77 K have exactly the same patterns, suggesting the characteristics of this carbon.