1000 resultados para Weed dynamics
Resumo:
The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix) type, S100A1 and S100B, that have been shown to inhibit microtubule (MT) protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF) subunits, desmin and glial fibrillary acidic protein (GFAP), with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head) domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B) represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.
Resumo:
This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC). Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical) properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.
Resumo:
Integrins play crucial roles in cell adhesion, migration, and signaling by providing transmembrane links between the extracellular matrix and the cytoskeleton. Integrins cluster in macromolecular complexes to generate cell-matrix adhesions such as focal adhesions. In this mini-review, we compare certain integrin-based biological responses and signaling during cell interactions with standard 2D cell culture versus 3D matrices. Besides responding to the composition of the matrix, cells sense and react to physical properties that include three-dimensionality and rigidity. In routine cell culture, fibroblasts and mesenchymal cells appear to use focal adhesions as anchors. They then use intracellular actomyosin contractility and dynamic, directional integrin movements to stretch cell-surface fibronectin and to generate characteristic long fibrils of fibronectin in "fibrillar adhesions". Some cells in culture proceed to produce dense, three-dimensional matrices similar to in vivo matrix, as opposed to the flat, rigid, two-dimensional surfaces habitually used for cell culture. Cells within such more natural 3D matrices form a distinctive class of adhesion termed "3D-matrix adhesions". These 3D adhesions show distinctive morphology and molecular composition. Their formation is heavily dependent on interactions between integrin alpha5ß1 and fibronectin. Cells adhere much more rapidly to 3D matrices. They also show more rapid morphological changes, migration, and proliferation compared to most 2D matrices or 3D collagen gels. Particularly notable are low levels of tyrosine phosphorylation of focal adhesion kinase and moderate increases in activated mitogen-activated protein kinase. These findings underscore the importance of the dimensionality and dynamics of matrix substrates in cellular responses to the extracellular matrix.
Resumo:
Traditional econometric approaches in modeling the dynamics of equity and commodity markets, have, made great progress in the past decades. However, they assume rationality among the economic agents and and do not capture the dynamics that produce extreme events (black swans), due to deviation from the rationality assumption. The purpose of this study is to simulate the dynamics of silver markets by using the novel computational market dynamics approach. To this end, the daily data from the period of 1st March 2000 to 1st March 2013 of closing prices of spot silver prices has been simulated with the Jabłonska-Capasso-Morale(JCM) model. The Maximum Likelihood approach has been employed to calibrate the acquired data with JCM. Statistical analysis of the simulated series with respect to the actual one has been conducted to evaluate model performance. The model captures the animal spirits dynamics present in the data under evaluation well.
Resumo:
Ecological specialization in resource utilization has various facades ranging from nutritional resources via host use of parasites or phytophagous insects to local adaptation in different habitats. Therefore, the evolution of specialization affects the evolution of most other traits, which makes it one of the core issues in the theory of evolution. Hence, the evolution of specialization has gained enormous amounts of research interest, starting already from Darwin’s Origin of species in 1859. Vast majority of the theoretical studies has, however, focused on the mathematically most simple case with well-mixed populations and equilibrium dynamics. This thesis explores the possibilities to extend the evolutionary analysis of resource usage to spatially heterogeneous metapopulation models and to models with non-equilibrium dynamics. These extensions are enabled by the recent advances in the field of adaptive dynamics, which allows for a mechanistic derivation of the invasion-fitness function based on the ecological dynamics. In the evolutionary analyses, special focus is set to the case with two substitutable renewable resources. In this case, the most striking questions are, whether a generalist species is able to coexist with the two specialist species, and can such trimorphic coexistence be attained through natural selection starting from a monomorphic population. This is shown possible both due to spatial heterogeneity and due to non-equilibrium dynamics. In addition, it is shown that chaotic dynamics may sometimes inflict evolutionary suicide or cyclic evolutionary dynamics. Moreover, the relations between various ecological parameters and evolutionary dynamics are investigated. Especially, the relation between specialization and dispersal propensity turns out to be counter-intuitively non-monotonous. This observation served as inspiration to the analysis of joint evolution of dispersal and specialization, which may provide the most natural explanation to the observed coexistence of specialist and generalist species.
Resumo:
The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.
Resumo:
Escherichia coli, as a model microorganism, was treated in phosphate-buffered saline under high hydrostatic pressure between 100 and 300 MPa, and the inactivation dynamics was investigated from the viewpoint of predictive microbiology. Inactivation data were curve fitted by typical predictive models: logistic, Gompertz and Weibull functions. Weibull function described the inactivation curve the best. Two parameters of Weibull function were calculated for each holding pressure and their dependence on holding pressure was obtained by interpolation. With the interpolated parameters, inactivation curves were simulated and compared with the experimental data sets.
Resumo:
Kalman filter is a recursive mathematical power tool that plays an increasingly vital role in innumerable fields of study. The filter has been put to service in a multitude of studies involving both time series modelling and financial time series modelling. Modelling time series data in Computational Market Dynamics (CMD) can be accomplished using the Jablonska-Capasso-Morale (JCM) model. Maximum likelihood approach has always been utilised to estimate the parameters of the JCM model. The purpose of this study is to discover if the Kalman filter can be effectively utilized in CMD. Ensemble Kalman filter (EnKF), with 50 ensemble members, applied to US sugar prices spanning the period of January, 1960 to February, 2012 was employed for this work. The real data and Kalman filter trajectories showed no significant discrepancies, hence indicating satisfactory performance of the technique. Since only US sugar prices were utilized, it would be interesting to discover the nature of results if other data sets are employed.
Resumo:
We determined the effects of helium-neon (He-Ne) laser irradiation on wound healing dynamics in mice treated with steroidal and non-steroidal anti-inflammatory agents. Male albino mice, 28-32 g, were randomized into 6 groups of 6 animals each: control (C), He-Ne laser (L), dexamethasone (D), D + L, celecoxib (X), and X + L. D and X were injected im at doses of 5 and 22 mg/kg, respectively, 24 h before the experiment. A 1-cm long surgical wound was made with a scalpel on the abdomens of the mice. Animals from groups L, D + L and X + L were exposed to 4 J (cm²)-1 day-1 of He-Ne laser for 12 s and were sacrificed on days 1, 2, or 3 after the procedure, when skin samples were taken for histological examination. A significant increase of collagen synthesis was observed in group L compared with C (168 ± 20 vs 63 ± 8 mm²). The basal cellularity values on day 1 were: C = 763 ± 47, L = 1116 ± 85, D = 376 ± 24, D + L = 698 ± 31, X = 453 ± 29, X + L = 639 ± 32 U/mm². These data show that application of L increases while D and X decrease the inflammatory cellularity compared with C. They also show that L restores the diminished cellularity induced by the anti-inflammatory drugs. We suggest that He-Ne laser promotes collagen formation and restores the baseline cellularity after pharmacological inhibition, indicating new perspectives for laser therapy aiming to increase the healing process when anti-inflammatory drugs are used.
Resumo:
Immunosuppression has been reported to occur during active visceral leishmaniasis and some factors such as the cytokine profile may be involved in this process. In the mouse model of cutaneous leishmaniasis using Leishmania (Leishmania) major, the Th1 response is related to protection while the Th2 response is related to disease progression. However, in hamsters, which are considered to be an excellent model for the study of visceral leishmaniasis, this dichotomy is not observed. Using outbred 45- to 60-day-old (140 to 150 g) male hamsters infected intraperitoneally with 2 x 10(7) L. (L.) chagasi amastigotes, we evaluated the immune response of spleen cells and the production of cytokines. We used 3 to 7 hamsters per group evaluated. We detected a preserved response to concanavalin A measured by index of proliferation during all periods of infection studied, while a proliferative response to Leishmania antigen was detected only at 48 and 72 h post-infection. Messenger RNA from cytokines type 1 (IL-2, TNF-α, IFN-γ) and type 2 (IL-4, IL-10 and TGF-β) detected by reverse transcriptase polymerase chain reaction and produced by spleen cells showed no qualitative difference between control non-infected hamsters and infected hamsters during any period of infection evaluated. Cytokines were measured by the DNA band intensity on agarose gel using the Image Lab 1D L340 software with no differences observed. In conclusion, the present results showed an antigen-dependent immunosuppression in hamsters with active visceral leishmaniasis that was not related to the cytokine profile.
Resumo:
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW) = rib cage (V RC) + abdomen (V AB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05). EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI) V CW (P < 0.05). In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.
Resumo:
The pulp and paper industry is currently facing broad structural changes due to global shifts in demand and supply. These changes have significant impacts on national economies worldwide. Planted forests (especially eucalyptus) and recovered paper have quickly increased their importance as raw material for paper and paperboard production. Although advances in information and communication technologies could reduce the demand for communication papers, and the growth of paper consumption has indeed flattened in developed economies, particularly in North America and Western Europe, the consumption is increasing on a global scale. Moreover, the focal point of production and consumption is moving from the Western world to the rapidly growing markets of Southeast Asia. This study analyzes how the so-called megatrends (globalization, technological development, and increasing environmental awareness) affect the pulp and paper industry’s external environment, and seeks reliable ways to incorporate the impact of the megatrends on the models concerning the demand, trade, and use of paper and pulp. The study expands current research in several directions and points of view, for example, by applying and incorporating several quantitative methods and different models. As a result, the thesis makes a significant contribution to better understand and measure the impacts of structural changes on the pulp and paper industry. It also provides some managerial and policy implications.