949 resultados para Web application


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of Software Engineering, web accessibility is gaining more room, establishing itself as an important quality attribute. This fact is due to initiatives of institutions such as the W3C (World Wide Web Consortium) and the introduction of norms and laws such as Section 508 that underlie the importance of developing accessible Web sites and applications. Despite these improvements, the lack of web accessibility is still a persistent problem, and could be related to the moment or phase in which this requirement is solved within the development process. From the moment when Web accessibility is generally regarded as a programming problem or treated when the application is already developed entirely. Thus, consider accessibility already during activities of analysis and requirements specification shows itself a strategy to facilitate project progress, avoiding rework in advanced phases of software development because of possible errors, or omissions in the elicitation. The objective of this research is to develop a method and a tool to support requirements elicitation of web accessibility. The strategy for the requirements elicitation of this method is grounded by the Goal-Oriented approach NFR Framework and the use of catalogs NFRs, created based on the guidelines contained in WCAG 2.0 (Web Content Accessibility Guideline) proposed by W3C

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an User Interface (UI) prototypes generation process to the softwares that has a Web browser as a plataform. This process uses UI components more complex than HTML elements. To described this components more complex this work suggest to use the XICL (eXtensinble User Interface Components Language). XICL is a language, based on XML syntax, to describe UI Components and IUs. XICL promotes extensibility and reusability in the User Interface development process. We have developed two compiler. The first one compiles IMML (Interactive Message Modeling Language) code and generates XICL code. The second one compiles XICL code and generates DHTML code

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capture web of N. clavipes presents viscous droplets, which play important roles in web mechanics and prey capture. By using scanning and transmission electron microscopy, it was demonstrated that the web droplets are constituted of different chemical environments, provided by the existence both of an aqueous and a lipid layer, which, in turn, present a suspension of tenths of vesicles containing polypeptides and/or tipids. GC/EI-MS Analysis of the contents of these vesicles led to the identification of some saturated fatty acids, such as decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, octadecanoic acid, and icosanoic acid, while other components were unsaturated fatty acids, such as (Z)-tetradec-9-enoic acid, (Z)-octadec-9-enoic acid, and (Z)-icosa-11-enoic acid; and polyunsaturated fatty acids like (9Z,12Z)-octadeca-9,12-dienoic acid, (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid, and (11Z,14Z)-icosa-11,14-dienoic acid. Toxic proteins such as calcium-activated proteinase and metalloproteinase jararhagin-like precursor were also identified by using a proteomic approach, indicating the possible involvement of these enzymes in the pre-digestion of spiders' preys web-captured. Apparently, the mixture of fatty acids are relatively toxic to insects by topical application (LD50 64.3 +/- 7.6 ng mg(-1) honeybee), while the proteins alone present no topical effect; however, when injected into the prey-insects, these proteins presented a moderate toxicity (LD50 40.3 +/- 4.8 ng mg(-1) honeybee); the mixture of fatty acids and proteins is very toxic to the preys captured by the web droplets of the viscid spiral of Nephila clavipes when topically applied on them (LD50 14.3 +/- 1.8ng mg(-1) honeybee).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel chemical subclass of toxin, [1-(3-diazenylphenyl) ethanol]iron, was identified among the compounds present in the web of the spider Nephila clavipes. This type of compound is not common among natural products, mainly in spider-venom toxins; it was shown to be a potent paralytic and/or lethal toxin applied by the spider over its web to ensure prey capture only by topical application. The structure was elucidated by means of ESI mass spectrometry, H-1-NMR spectroscopy, high-resolution (HR) mass spectrometry, and ICP spectrometry. The structure of [1-( 3-diazenylphenyl)ethanol] iron and the study of its insecticidal action may be used as a starting point for the development of new drugs for pest control in agriculture.