994 resultados para Weakly Lindelöf Determined Banach Space
Resumo:
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities.
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.
Resumo:
In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.
Resumo:
Spin factors and generalizations are used to revisit positive generation of B(E, F), where E and F are ordered Banach spaces. Interior points of B(E, F)+ are discussed and in many cases it is seen that positive generation of B(E, F) is controlled by spin structure in F when F is a JBW-algebra.
Resumo:
The combination of radar and lidar in space offers the unique potential to retrieve vertical profiles of ice water content and particle size globally, and two algorithms developed recently claim to have overcome the principal difficulty with this approach-that of correcting the lidar signal for extinction. In this paper "blind tests" of these algorithms are carried out, using realistic 94-GHz radar and 355-nm lidar backscatter profiles simulated from aircraft-measured size spectra, and including the effects of molecular scattering, multiple scattering, and instrument noise. Radiation calculations are performed on the true and retrieved microphysical profiles to estimate the accuracy with which radiative flux profiles could be inferred remotely. It is found that the visible extinction profile can be retrieved independent of assumptions on the nature of the size distribution, the habit of the particles, the mean extinction-to-backscatter ratio, or errors in instrument calibration. Local errors in retrieved extinction can occur in proportion to local fluctuations in the extinction-to-backscatter ratio, but down to 400 m above the height of the lowest lidar return, optical depth is typically retrieved to better than 0.2. Retrieval uncertainties are greater at the far end of the profile, and errors in total optical depth can exceed 1, which changes the shortwave radiative effect of the cloud by around 20%. Longwave fluxes are much less sensitive to errors in total optical depth, and may generally be calculated to better than 2 W m(-2) throughout the profile. It is important for retrieval algorithms to account for the effects of lidar multiple scattering, because if this is neglected, then optical depth is underestimated by approximately 35%, resulting in cloud radiative effects being underestimated by around 30% in the shortwave and 15% in the longwave. Unlike the extinction coefficient, the inferred ice water content and particle size can vary by 30%, depending on the assumed mass-size relationship (a problem common to all remote retrieval algorithms). However, radiative fluxes are almost completely determined by the extinction profile, and if this is correct, then errors in these other parameters have only a small effect in the shortwave (around 6%, compared to that of clear sky) and a negligible effect in the longwave.
Resumo:
The geospace environment is controlled largely by events on the Sun, such as solar flares and coronal mass ejections, which generate significant geomagnetic and upper atmospheric disturbances. The study of this Sun-Earth system, which has become known as space weather, has both intrinsic scientific interest and practical applications. Adverse conditions in space can damage satellites and disrupt communications, navigation, and electric power grids, as well as endanger astronauts. The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the U.S. National Science Foundation (see http://www.bu.edu/cism/), is developing a suite of integrated physics-based computer models that describe the space environment from the Sun to the Earth for use in both research and operations [Hughes and Hudson, 2004, p. 1241]. To further this mission, advanced education and training programs sponsored by CISM encourage students to view space weather as a system that encompasses the Sun, the solar wind, the magnetosphere, and the ionosphere/thermosphere. This holds especially true for participants in the CISM space weather summer school [Simpson, 2004].
Resumo:
Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) experiment in Niamey, Niger, in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimize sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud versus those with predominantly clear skies. The influence of temperature, water vapor, aerosols, and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence shows a relatively small variation through the year, because of a partial compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR. When combined with the changes in temperature, this maintains the atmospheric longwave divergence within the narrow range that is observed. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.
Resumo:
Airborne scanning laser altimetry (LiDAR) is an important new data source for river flood modelling. LiDAR can give dense and accurate DTMs of floodplains for use as model bathymetry. Spatial resolutions of 0.5m or less are possible, with a height accuracy of 0.15m. LiDAR gives a Digital Surface Model (DSM), so vegetation removal software (e.g. TERRASCAN) must be used to obtain a DTM. An example used to illustrate the current state of the art will be the LiDAR data provided by the EA, which has been processed by their in-house software to convert the raw data to a ground DTM and separate vegetation height map. Their method distinguishes trees from buildings on the basis of object size. EA data products include the DTM with or without buildings removed, a vegetation height map, a DTM with bridges removed, etc. Most vegetation removal software ignores short vegetation less than say 1m high. We have attempted to extend vegetation height measurement to short vegetation using local height texture. Typically most of a floodplain may be covered in such vegetation. The idea is to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This obviates the need to calibrate a global floodplain friction coefficient. It’s not clear at present if the method is useful, but it’s worth testing further. The LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is a low pass filtering operation, in which objects of high spatial frequency such as buildings, river embankments and walls may be incorrectly classed as vegetation. The problem is particularly acute in urban areas. A solution may be to apply pattern recognition techniques to LiDAR height data fused with other data types such as LiDAR intensity or multispectral CASI data. We are attempting to use digital map data (Mastermap structured topography data) to help to distinguish buildings from trees, and roads from areas of short vegetation. The problems involved in doing this will be discussed. A related problem of how best to merge historic river cross-section data with a LiDAR DTM will also be considered. LiDAR data may also be used to help generate a finite element mesh. In rural area we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees, so that e.g. hedge elements can be assigned higher friction coefficients than those in adjacent fields. We are attempting to extend this approach to urban area, so that the mesh is decomposed in the vicinity of buildings, roads, etc as well as trees and hedges. A dominant points algorithm is used to identify points of high curvature on a building or road, which act as initial nodes in the meshing process. A difficulty is that the resulting mesh may contain a very large number of nodes. However, the mesh generated may be useful to allow a high resolution FE model to act as a benchmark for a more practical lower resolution model. A further problem discussed will be how best to exploit data redundancy due to the high resolution of the LiDAR compared to that of a typical flood model. Problems occur if features have dimensions smaller than the model cell size e.g. for a 5m-wide embankment within a raster grid model with 15m cell size, the maximum height of the embankment locally could be assigned to each cell covering the embankment. But how could a 5m-wide ditch be represented? Again, this redundancy has been exploited to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within finite elements at the waterline.