994 resultados para Water restriction
Resumo:
For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.
Resumo:
Restriction enzyme KpnI is a HNH superfamily endonuclease requiring divalent metal ions for DNA cleavage but not for binding. The active site of KpnI can accommodate metal ions of different atomic radii for DNA cleavage. Although Mg2+ ion higher than 500 mu M mediates promiscuous activity, Ca2+ suppresses the promiscuity and induces high cleavage fidelity. Here, we report that a conservative mutation of the metal-coordinating residue D148 to Glu results in the elimination of the Ca2+-mediated cleavage but imparting high cleavage fidelity with Mg2+. High cleavage fidelity of the mutant D148E is achieved through better discrimination of the target site at the binding and cleavage steps. Biochemical experiments and molecular dynamics simulations suggest that the mutation inhibits Ca2+-mediated cleavage activity by altering the geometry of the Ca2+-bound HNH active site. Although the D148E mutant reduces the specific activity of the enzyme, we identified a suppressor mutation that increases the turnover rate to restore the specific activity of the high fidelity mutant to the wild-type level. Our results show that active site plasticity in coordinating different metal ions is related to KpnI promiscuous activity, and tinkering the metal ion coordination is a plausible way to reduce promiscuous activity of metalloenzymes.
Resumo:
This study presents the synthesis, characterization, and kinetics of steam reforming of methane and water gas shift (WGS) reactions over highly active and coke resistant Zr0.93Ru0.05O2-delta. The catalyst showed high activity at low temperatures for both the reactions. For WGS reaction, 99% conversion of CO with 100% H-2 selectivity was observed below 290 degrees C. The detailed kinetic studies including influence of gas phase product species, effect of temperature and catalyst loading on the reaction rates have been investigated. For the reforming reaction, the rate of reaction is first order in CH4 concentration and independent of CO and H2O concentration. This indicates that the adsorptive dissociation of CH4 is the rate determining step. The catalyst also showed excellent coke resistance even under a stoichiometric steam/carbon ratio. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic nature of Ru species. The associative mechanism involving the surface formate as an intermediate was used to correlate experimental data. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
We carry out a series of long atomistic molecular dynamics simulations to study the unfolding of a small protein, chicken villin headpiece (HP-36), in water-ethanol (EtOH) binary mixture. The prime objective of this work is to explore the sensitivity of protein unfolding dynamics toward increasing concentration of the cosolvent and unravel essential features of intermediates formed in search of a dynamical pathway toward unfolding. In water ethanol binary mixtures, HP-36 is found to unfold partially, under ambient conditions, that otherwise requires temperature as high as similar to 600 K to denature in pure aqueous solvent. However, an interesting course of pathway is observed to be followed in the process, guided by the formation of unique intermediates. The first step of unfolding is essentially the separation of the cluster formed by three hydrophobic (phenylalanine) residues, namely, Phe-7, Phe-11, and Phe-18, which constitute the hydrophobic core, thereby initiating melting of helix-2 of the protein. The initial steps are similar to temperature-induced unfolding as well as chemical unfolding using DMSO as cosolvent. Subsequent unfolding steps follow a unique path. As water-ethanol shows composition-dependent anomalies, so do the details of unfolding dynamics. With an increase in cosolvent concentration, different partially unfolded intermediates are found to be formed. This is reflected in a remarkable nonmonotonic composition dependence of several order parameters, including fraction of native contacts and protein-solvent interaction energy. The emergence of such partially unfolded states can be attributed to the preferential solvation of the hydrophobic residues by the ethyl groups of ethanol. We further quantify the local dynamics of unfolding by using a Marcus-type theory.
Resumo:
Cation sensing properties of the three positional isomers of rhodamine based sensors (1-3) are studied in water. The sensors differ only in the position of pyridine's nitrogen. The chemosensor 1, with pyridine nitrogen at ortho-position, showed a selective colorimetric detection of Cu(II) ions in water, at physiological pH 7.4 and also in medium containing BSA (bovine serum albumin) and blood serum. Notably the compound 2 and 3, with pyridine end located at meta-and para-positions did not show any color change with Cu(II) ions, although both the compounds showed turn-on change both in color and fluorescence with Hg(II) ions specifically. All the probes showed ratiometric changes with the specific metal ions. The changing position of nitrogen also changed the complexation pattern of the sensors with the metal ions. Probe 1 showed 2 : 1 complexation with Cu(II), whereas 2 and 3 showed 1 : 1 complexation with Hg(II) ions. The mechanism investigation showed that the change in color upon addition of metal ions is due to the ring-opening of the spirolactam ring of the probes. Cu(II) interacted with ligand 1 through a three-point interaction mode comprising carbonyl oxygen, amido nitrogen and pyridine nitrogen end. But in case of 2 and 3, Hg2+ only interacted through pyridine nitrogen ends. Quantitative estimation of Cu2+ and Hg2+ in complex biological media such as bovine albumin protein (BSA) and human blood serum were performed using these sensors. Rapid on-site detection as well as discrimination of these toxic ions was demonstrated using easily prepared portable test-strips.
Resumo:
Drastic groundwater resource depletion due to excessive extraction for irrigation is a major concern in many parts of India. In this study, an attempt was made to simulate the groundwater scenario of the catchment using ArcSWAT. Due to the restriction on the maximum initial storage, the deep aquifer component in ArcSWAT was found to be insufficient to represent the excessive groundwater depletion scenario. Hence, a separate water balance model was used for simulating the deep aquifer water table. This approach is demonstrated through a case study for the Malaprabha catchment in India. Multi-site rainfall data was used to represent the spatial variation in the catchment climatology. Model parameters were calibrated using observed monthly stream flow data. Groundwater table simulation was validated using the qualitative information available from the field. The stream flow was found to be well simulated in the model. The simulated groundwater table fluctuation is also matching reasonably well with the field observations. From the model simulations, deep aquifer water table fluctuation was found very severe in the semi-arid lower parts of the catchment, with some areas showing around 60m depletion over a period of eight years. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Donor-acceptor-donor-structured thiophene derivative-based conducting polymer poly(7,9-dithiophene-2yl-8H-cyclopentaa]acenaphthalene-8-one) was chemically synthesized. This polymer was used to modify both glassy-carbon and carbon-paste electrode, which was used to detect lead(II) ions present in water in the range of 1 mM to 0.1 mu M. Cyclic voltammetry confirms the formation of the co-ordination complex between the soft segment of polymer and the dissolved lead ion. Anodic stripping voltammetry was carried out by the modified electrode to determine the lower limit of detection of dissolved lead(II) species in the solution. Differential adsorptive stripping and impedance measurements were also conducted to find the lowest possible response of the as-synthesized polymer to lead(II) ion in water. The electrochemical performance of the modified electrodes at different pH (4, 7 and 9) environments was carried out by stripping voltammetry, to get optimum sensitivity and stability under these conditions. Finally, interference analysis was carried out to detect the modified electrode's sensitivity towards lead ion affinity in water.
Resumo:
Selective detection of nitro-aromatic compounds (NACs) at nanomolar concentration is achieved for the first time in multiple media including water, micelles or in organogels as well as using test strips. Mechanism of interaction of NACs with highly fluorescent p-phenylenevinylene-based molecules has been described as the electron transfer phenomenon from the electron-rich chromophoric probe to the electron deficient NACs. The selectivity in sensing is guided by the pK(a) of the probes as well as the NACs under consideration. TNP-induced selective gel-to-sol transition in THF medium is also observed through the reorganization of molecular self-assembly and the portable test trips are made successfully for rapid on-site detection purpose.
Resumo:
In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.
Resumo:
A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the naked-eye detection of cyanide ions in water with a visual color change from red to yellow ((max)=80nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for in-field experiments without requiring any sophisticated instruments.
Resumo:
It is no exaggeration to state that the energy crisis is the most serious challenge that we face today. Among the strategies to gain access to reliable, renewable energy, the use of solar energy has clearly emerged as the most viable option. A promising direction in this context is artificial photosynthesis. In this article, we briefly describe the essential features of artificial photosynthesis in comparison with natural photosynthesis and point out the modest success that we have had in splitting water to produce oxygen and hydrogen, specially the latter.
Resumo:
An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.
Resumo:
In addition to the biologically active monomer of the protein insulin circulating in human blood, the molecule also exists in dimeric and hexameric forms that are used as storage. The insulin monomer contains two distinct surfaces, namely, the dimer forming surface (DFS) and the hexamer forming surface (HFS), that are specifically designed to facilitate the formation of the dimer and the hexamer, respectively. In order to characterize the structural and dynamical behavior of interfacial water molecules near these two surfaces (DFS and HFS), we performed atomistic molecular dynamics simulations of insulin with explicit water. Dynamical characterization reveals that the structural relaxation of the hydrogen bonds formed between the residues of DFS and the interfacial water molecules is faster than those formed between water and that of the HFS. Furthermore, the residence times of water molecules in the protein hydration layer for both the DFS and HFS are found to be significantly higher than those for some of the other proteins studied so far, such as HP-36 and lysozyme. In particular, we find that more structured water molecules, with higher residence times (similar to 300-500 ps), are present near HFS than those near DFS. A significant slowing down is observed in the decay of associated rotational auto time correlation functions of O-H bond vector of water in the vicinity of HFS. The surface topography and the arrangement of amino acid residues work together to organize the water molecules in the hydration layer in order to provide them with a preferred orientation. HFS having a large polar solvent accessible surface area and a convex extensive nonpolar region, drives the surrounding water molecules to acquire predominantly an outward H-atoms directed, clathrate-like structure. In contrast, near the DFS, the surrounding water molecules acquire an inward H-atoms directed orientation owing to the flat curvature of hydrophobic surface and the interrupted hydrophilic residual alignment. We have followed escape trajectory of several such quasi-bound water molecules from both the surfaces that reveal the significant differences between the two hydration layers.