966 resultados para Water resources development
Resumo:
Despite failed attempts at obtaining a potable water system, the village of El Caracol in Southern Honduras remains committed to improving access to water resources. To assist in this endeavor, an investigation of the hydrogeological characteristics of the local watershed was conducted. Daily precipitation was recorded to examine the relationship between precipitation and approximated river and spring discharges. A Thornthwaite Mather Water Balance Model was used to predict monthly discharges for comparison with observed values, and to infer the percentage of topographic watersheds contributing to the respective discharges. As aquifer porosity in this region is thought to be primarily secondary (i.e., fractures), field observed lineaments were compared with those interpreted from remote sensing imagery in an attempt to determine the usefulness of these interpretations in locating potential water sources for a future project.
Resumo:
Water resource depletion and sanitation are growing problems around the world. A solution to both of these problems is the use of composting latrines, as it requires no water and has been recommended by the World Health Organization as an improved sanitation technology. However, little analysis has been done on the decomposition process occurring inside the latrine, including what temperatures are reached and what variables most affect the composting process. Having better knowledge of how outside variables affect composting latrines can aid development workers on the choice of implementing such technology, and to better educate the users on the appropriate methods of maintenance. This report presents a full, detailed construction manual and temperature data analysis of a double vault composting latrine. During the author’s two year Peace Corps service in rural Paraguay he was involved with building twenty one composting latrines, and took detailed temperature readings and visual observations of his personal latrine for ten months. The author also took limited temperature readings of fourteen community member’s latrines over a three month period. These data points were analyzed to find correlations between compost temperatures and several variables. The two main variables found to affect the compost temperatures were the seasonal trends of the outside temperatures, and the mixing and addition of moisture to the compost. Outside seasonal temperature changes were compared to those of the compost and a linear regression was performed resulting in a R2-value of 0.89. Mixing the compost and adding water, or a water/urine mixture, resulted in temperature increases of the compost 100% of the time, with seasonal temperatures determining the rate and duration of the temperature increases. The temperature readings were also used to find events when certain temperatures were held for sufficient amounts of time to reach total pathogen destruction in the compost. Four different events were recorded when a temperature of 122°F (50°C) was held for at least 24 hours, ensuring total pathogen destruction in that area of the compost. One event of 114.8°F (46°C) held for one week was also recorded, again ensuring total pathogen destruction. Through the analysis of the temperature data, however, it was found that the compost only reached total pathogen destruction levels during ten percent of the data points. Because of this the storage time recommendation outlined by the World Health Organization should be complied with. The WHO recommends storing compost for 1.5-2 years in climates with ambient temperatures of 2-20°C (35-68°F), and for at least 1 year with ambient temperatures of 20-35°C (68-95°F). If these storage durations are obtainable the use of the double vault composting latrine is an economical and achievable solution to sanitation while conserving water resources.
Resumo:
Safe disposal of toxic wastes in geologic formations requires minimal water and gas movement in the vicinity of storage areas, Ventilation of repository tunnels or caverns built in solid rock can desaturate the near field up to a distance of meters from the rock surface, even when the surrounding geological formation is saturated and under hydrostatic pressures. A tunnel segment at the Grimsel test site located in the Aare granite of the Bernese Alps (central Switzerland) has been subjected to a resaturation and, subsequently, to a controlled desaturation, Using thermocouple psychrometers (TP) and time domain reflectometry (TDR), the water potentials psi and water contents theta were measured within the unsaturated granodiorite matrix near the tunnel wall at depths between 0 and 160 cm. During the resaturation the water potentials in the first 30 cm from the rock surface changed within weeks from values of less than -1.5 MPa to near saturation. They returned to the negative initial values during desaturation, The dynamics of this saturation-desaturation regime could be monitored very sensitively using the thermocouple psychrometers, The TDR measurements indicated that water contents changed dose to the surface, but at deeper installation depths the observed changes were within the experimental noise. The field-measured data of the desaturation cycle were used to test the predictive capabilities of the hydraulic parameter functions that were derived from the water retention characteristics psi(theta) determined in the laboratory. A depth-invariant saturated hydraulic conductivity k(s) = 3.0 x 10(-11) m s(-1) was estimated from the psi(t) data at all measurement depths, using the one-dimensional, unsaturated water flow and transport model HYDRUS Vogel er al., 1996, For individual measurement depths, the estimated k(s) varied between 9.8 x 10(-12) and 6.1 x 10(-11) The fitted k(s) values fell within the range of previously estimated k(s) for this location and led to a satisfactory description of the data, even though the model did not include transport of water vapor.
Resumo:
A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic theta(psi) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, psi, below the tensiometric range (psi < -0.1 MPa) can be measured with thermocouple psychrometers (TP), and the volumetric water contents, theta, by means of time domain reflectometry (TDR). These standard methods were adapted for measuring the water status in a macroscopically unfissured granodiorite with a total porosity of approximately 0.01. The measured water retention curve of granodiorite samples from the Grimsel test site (central Switzerland) exhibits a shape which is typical for bimodal pore size distributions. The measured bimodality is probably an artifact of a large surface ratio of solid/voids. The thermocouples were installed without a metallic screen using the cavity drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR Probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.
Resumo:
Groundwater age is a key aspect of production well vulnerability. Public drinking water supply wells typically have long screens and are expected to produce a mixture of groundwater ages. The groundwater age distributions of seven production wells of the Holten well field (Netherlands) were estimated from tritium-helium (3H/3He), krypton-85 (85Kr), and argon-39 (39Ar), using a new application of a discrete age distribution model and existing mathematical models, by minimizing the uncertainty-weighted squared differences of modeled and measured tracer concentrations. The observed tracer concentrations fitted well to a 4-bin discrete age distribution model or a dispersion model with a fraction of old groundwater. Our results show that more than 75 of the water pumped by four shallow production wells has a groundwater age of less than 20 years and these wells are very vulnerable to recent surface contamination. More than 50 of the water pumped by three deep production wells is older than 60 years. 3H/3He samples from short screened monitoring wells surrounding the well field constrained the age stratification in the aquifer. The discrepancy between the age stratification with depth and the groundwater age distribution of the production wells showed that the well field preferentially pumps from the shallow part of the aquifer. The discrete groundwater age distribution model appears to be a suitable approach in settings where the shape of the age distribution cannot be assumed to follow a simple mathematical model, such as a production well field where wells compete for capture area.
Resumo:
Urban agriculture is a phenomenon that can be observed world-wide, particularly in cities of devel-oping countries. It is contributing significantly to food security and food safety and has sustained livelihood of the urban and peri-urban low income dwellers in developing countries for many years. Population increase due to rural-urban migration and natural, coupled with formal as well as infor-mal urbanization are competing with urban farming for available space and scarce water resources. A multitemporal multisensoral urban change analysis over the period of 25 years (1982-2007) was performed in order to measure and visualize the urban expansion along the Kizinga and Mzinga valley in the South of Dar es Salaam. Airphotos and VHR satellite data were analyzed by using a combination of a composition of anisotropic textural measures and spectral information. The study revealed that unplanned built-up area is expanding continuously and vegetation covers and agricultural lands decline at a fast rate. The validation showed that the overall classification accuracy varied depending on the database. The extracted built-up areas were used for visual in-terpretation mapping purposes and served as information source for another research project. The maps visualize an urban congestion and expansion of nearly 18% of the total analyzed area that had taken place in the Kizinga valley between 1982 and 2007. The same development can be ob-served in the less developed and more remote Mzinga valley between 1981 and 2002. Both areas underwent fast changes where land prices still tend to go up and an influx of people both from rural and urban areas continuously increase density with the consequence of increasing multiple land use interests.
Resumo:
Three extended families live around a lake. One family are rice farmers, the second family are vegetable farmers, and the third are a family of livestock herders. All of them depend on the use of lake water for their production, and all of them need large quantities of water. All are dependent on the use of the lake water to secure their livelihood. In the game, the families are represented by their councils of elders. Each of the councils has to find means and ways to increase production in order to keep up with the growth of its family and their demands. This puts more and more pressure on the water resources, increasing the risk of overuse. Conflicts over water are about to emerge between the families. Each council of elders must try to pursue its families interests, while at the same time preventing excessive pressure on the water resources. Once a council of elders is no longer able to meet the needs of its family, it is excluded from the game. Will the parties cooperate or compete? To face the challenge of balancing economic well-being, sustainable resource management, and individual and collective interests, the three parties have a set of options for action at hand. These include power play to safeguard their own interests, communication and cooperation to negotiate with neighbours, and searching for alternatives to reduce pressure on existing water resources. During the game the players can experience how tensions may arise, increase and finally escalate. They realise what impact power play has and how alliances form, and the importance of trust-building measures, consensus and cooperation. From the insights gained, important conflict prevention and mitigation measures are derived in a debriefing session. The game is facilitated by a moderator, and lasts for 3-4 hours. Aim of the game: Each family pursues the objective of serving its own interests and securing its position through appropriate strategies and skilful negotiation, while at the same time optimising use of the water resources in a way that prevents their degradation. The end of the game is open. While the game may end by one or two families dropping out because they can no longer secure their subsistence, it is also possible that the three families succeed in creating a situation that allows them to meet their own needs as well as the requirements for sustainable water use in the long term. Learning objectives The game demonstrates how tension builds up, increases, and finally escalates; it shows how power positions work and alliances are formed; and it enables the players to experience the great significance of mutual agreement and cooperation. During the game and particularly during the debriefing and evaluation session it is important to link experiences made during the game to the players’ real-life experiences, and to discuss these links in the group. The resulting insights will provide a basis for deducing important conflict prevention and transformation measures.
Resumo:
Maps: Information on water resources and their uses (technical, legal, etc. issues)
Resumo:
Agriculture is the back borne of the economy of Tanzania and its main objective is to ensure food security and eradication of rural poverty through the promotion of production systems, technologies and practices that are environmental sound (Tanzania National Environmental Policy, 1999). However, this has not been achieved due to rapid land degradation, which has consequently lead to massive soil loss, decline in crop yields, disruption of water resources and the destruction of the natural resources in general. This report highlights the extent to which agricultural related activities like agronomic and cultural practices such as use of fire for preparation of farms and cutting of trees to meet villagers’ needs have devastating effect on the quality of the environment. Besides these observed difficulties this paper argued that as the survival, well being and future of the Uluguru and Usambara people it is essential to provide continuous training to farmers, so that they know how best to continue farming and harvesting forest products on a sustainable basis without causing much harm to the environment. Most of all this paper recommends the introduction of Ngolo cultivation technology on steep slopes of Usambara and Uluguru mountains in order to enhance the conservation of the environment.
Resumo:
More than 40 years after the agrarian reform, Peru is experiencing a renewed process of concentration of land ownership in the hands of large-scale investors, favoring the development of a sugar cane production cluster along the northern coast. The expansion of the agricultural frontier by means of large irrigation projects – originally developed to benefit medium- and small-scale farmers – is carried out today in order to be sold to large-scale investors for the production of export crops. In the region of Piura the increasing presence of large-scale biofuel investors puts substantial pressure on land and water resources, not only changing the use of and access to land for local communities, but also generating water shortages vis-à-vis the multiple water demands of local food producers. The changes in land relations and the agro-ecosystem, the altering food production regime as well as the increasing proletarization of smallholders, is driving many locals – even those which (initially) welcomed the investment – into resistance activities against the increasing control of land, water and other natural resources in the hands of agribusinesses. The aim of this presentation is to discuss the contemporary political, social and cultural dynamics of agrarian change along the northern Peruvian coast as well as the «reactions from below» emanating from campesino communities, landless laborers, brick producers, pastoralists as well as other marginalized groups. The different strategies, forms and practices of resistance with the goal of the «protection of the territory» shall be explored as well as the reasons for their rather scattered occurrence and the lack of alliances on the land issue. This input shall make a contribution to the on-going debate on individual and communal property rights and the question of what is best in terms of collective defense against land grabbing.
Resumo:
This study examines the validity of the assumption that international large-scale land acquisition (LSLA) is motivated by the desire to secure control over water resources, which is commonly referred to as ‘water grabbing’. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources—such as China, India, and all Gulf States except Saudi Arabia—invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk.
Resumo:
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.
Resumo:
With the increasing expectation of information searchers for all information to be available online, digital projects are growing in number and importance. These projects allow libraries to become producers, if not of content, then of new accessibility options for their patrons. One librarian’s experience in the development and coordination of a digital project in an academic setting is presented, in order to demonstrate potential best practices for similar projects. Selection, coordination, standards, outsourcing, and funding of projects are all discussed. It is possible relatively quickly and inexpensively to produce a useful, quality digital project.