975 resultados para Washing powders


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a photochromic wool fabric has been prepared by applying a photochromic-dye hybrid silica sol-gel onto the surface of fabric. The photochromic fabric was found to have a very quick optical response. Two types of silica were used as the matrix material, and the type of silica had a small effect only on the photochromic performance, the fabric washing fastness, and water contact angle, but affected the fabric handle property considerably. The silica from a precursor containing a long alkyl chain showed very little influence on the fabric handle and better photochromic performance than that containing a phenyl group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium (Ti) and nickel (Ni) elemental powders were blened by ball milling and the ball milled powders were employed to fabricate NiNi shape memory alloy (SMA) foams by space sintering. Effect of ball milling time on phase constitutes of the sintered TiNi alloy foams was studied by X-ray diffraction (XRD) analysis.Scanning election microscopy (SEM) was used to characterize the porous structure, and compressive tests were carried out to evaluate the mechanical properties of the foams. Results indicate the porosities of the TiNi alloy foams can be controlled by using the spacer sincering method, and the porosities show a significant effect on the mechanical prperties and shape memory effect (SME).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creatine (Cr) plays a key role in cellular energy metabolism and is found at high concentrations in metabolically active cells such as skeletal muscle and neurons. These, and a variety of other cells, take up Cr from the extra cellular fluid by a high affinity Na+/Cl--dependent creatine transporter (CrT). Mutations in the crt gene, found in several patients, lead to severe retardation of speech and mental development, accompanied by the absence of Cr in the brain.
In order to characterize CrT protein(s) on a biochemical level, antibodies were raised against synthetic peptides derived from the N- and C-terminal cDNA sequences of the putative CrT-1 protein. In total homogenates of various tissues, both antibodies, directed against these different epitopes, recognize the same two major polypetides on Western blots with apparent Mr of 70 and 55 kDa. The C-terminal CrT antibody (α-CrTCOOH) immunologically reacts with proteins located at the inner membrane of mitochondria as determined by immuno-electron microscopy, as well as by subfractionation of mitochondria. Cr-uptake experiments with isolated mitochondria showed these organelles were able to transport Cr via a sulfhydryl-reagent-sensitive transporter that could be blocked by anti-CrT antibodies when the outer mitochondrial membrane was permeabilized. We concluded that mitochondria are able to specifically take-up Cr from the cytosol, via a low-affinity CrT, and that the above polypeptides would likely represent mitochondrial CrT(s). However, by mass spectrometry techniques, the immunologically reactive proteins, detected by our anti-CrT antibodies, were identified as E2 components of the agr-keto acid dehydrogenase multi enzyme complexes, namely pyruvate dehydrogenase (PDH), branched chain keto acid dehydrogenase (BC-KADH) and α-ketoglutarate dehydrogenase (α-KGDH). The E2 components of PDH are membrane associated, whilst it would be expected that a mitochondrial CrT would be a transmembrane protein. Results of phase partitioning by Triton X-114, as well as washing of mitochondrial membranes at basic pH, support that these immunologically cross-reactive proteins are, as expected for E2 components, membrane associated rather than transmembrane. On the other hand, the fact that mitochondrial Cr uptake into intact mitoplast could be blocked by our α-CrTCOOH antibodies, indicate that our antisera contain antibodies reactive to proteins involved in mitochondrial transport of Cr. The presence of specific antibodies against CrT is also supported by results from plasma membrane vesicles isolated from human and rat skeletal muscle, where both 55 and 70 kDa polypeptides disappeared and a single polypeptide with an apparent electrophoretic mobility of ~ 60 kDa was enriched This latter is most likely representing the genuine plasma membrane CrT.
Due to the fact that all anti-CrT antibodies that were independently prepared by several laboratories seem to cross-react with non-CrT polypeptides, specifically with E2 components of mitochondrial dehydrogenases, further research is required to characterise on a biochemical/biophysical level the CrT polypeptides, e.g. to determine whether the ~ 60 kDa polypeptide is indeed a bona-fide CrT and to identify the mitochondrial transporter that is able to facilitate Cr-uptake into these organelles. Therefore, the anti-CrT antibodies available so far should only be used with these precautions in mind. This holds especially true for quantitation of CrT polypeptides by Western blots, e.g. when trying to answer whether CrT's are up- or down-regulated by certain experimental interventions or under pathological conditions.
In conclusion, we still hold to the scheme that besides the high-affinity and high-efficiency plasmalemma CrT there exists an additional low affinity high Km Cr uptake mechanism in mitochondria. However, the exact biochemical nature of this mitochondrial creatine transport, still remains elusive. Finally, similar to the creatine kinase (CK) isoenzymes, which are specifically located at different cellular compartments, also the substrates of CK are compartmentalized in cytosolic and mitochondrial pools. This is in line with 14C-Cr-isotope tracer studies and a number of [31P]-NMR magnetization transfer studies, as well as with recent [1H]-NMR spectroscopy data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous 55Mg35Ni10Si alloy powder has been synthesized by mechanical alloying technique using pure Mg, Ni and Si elemental powders. The transformation of the crystalline powders into an amorphous one has been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. The new material produced has a higher thermal stability than reported results, which is beneficial to the fabrication of Mg–Ni–Si bulk amorphous components through powder metallurgy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [35S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wool fibres consist of micro to nano scale protein constituents that could be used for innovative applications. While techniques for extracting these constituents or making wool fibres into organic powders have been developed, effectively dispersing the particles and accurately determining their size has been difficult in practice. In this study, an ultrasonic method was employed to disperse cortical cells extracted from wool fibres into an
immersion oil or ethanol. Specimens of the cortical cells were then observed under optical microscopy and scanning electron microscopy, respectively. Cell length and maximum cell diameter were measured to quantify the cell size. The results suggest significant discrepancies exist in the cortical cell size obtained from the two different measurement techniques. The maximum diameter of wool cortical cells obtained from the optical microscope was much larger than that from the scanning electron microscope, while the length was much shorter. A correction factor is given so that cortical cell size obtained from the two measurement techniques can be compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO–C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200 °C for 1 h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000 °C). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO–C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a simple and effective approach for growing large-scale, high-density, and well-patterned conical boron nitride nanorods. A catalyst layer of Fe(NO3)3 was patterned on a silicon substrate by using a copper grid as a mask. The nanorods were grown via annealing milled boron carbide powders at 1300 °C in a flow of nitrogen gas. The as-grown nanorods exhibit uniform morphology and the catalyst pattern precisely defines the position of nanorod deposition. Cathodoluminescence (CL) spectra of the nanorods show two broad emission bands centered at 3.75 and 1.85 eV. Panchromatic CL images reveal clear patterned structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc nanowires have been synthesized by heating a mixture of boron and zinc oxide (ZnO) powders at 1050 °C under a nitrogen atmosphere. The influences of the gas flow rate and the substrate character on the nanowire formation were investigated. It was found that higher-flow rate of gas led to the formation of thinner nanowires; while lower-flow rate of gas produced thicker nanowires and even particles due to the higher partial pressure of Zn vapor in this case. Zn nanowires can be produced on alumina and quartz substrates, but not on a stainless-steel substrate under the same or different synthetic conditions. Photoluminescence measurements were conducted on Zn nanowires and particles and weak emission bands at 482 and 493 nm were observed, which may be contributed by the thin ZnO film on the nanowire surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When growing one-dimensional (1D) nanomaterials via the vapour–liquid–solid (VLS) model, the substrates usually need to be coated with a layer of catalyst film. In this study, however, an effective approach for the synthesis of boron nitride (BN) nanowires directly onto commercial stainless-steel foils has been demonstrated. Growth occurs by heating boron and zinc oxide (ZnO) powders at 1100 °C under a mixture of nitrogen and hydrogen gas flow (200 ml min−1). The stainless-steel foils played an additional role of catalyst besides substrate during the VLS growth of these BN nanowires. The as-synthesized nanowires emit strong photoluminescence (PL) bands at 515, 535 and 728 nm. In addition, we found that the gas flow rate and the hydrogen content in the gas mixture strongly affected the diameter and yield of the nanowires by changing the relative concentration of the nanowire growth species in the chamber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A boron nitride (BN) nanostructure, conical BN nanorod, has been synthesized in a large quantity on Si substrates for the first time via the ball-milling and annealing method. Nitridation of milled boron carbide (B4C) powders was performed in nitrogen gas at 1300°C on the surface of the substrates to form the BN nanorods. The highly crystallized nanorods consist of conical BN basal layers stacked along the nanorod axis. Ball milling of the B4C powders can significantly enhance the nitridation of the powders and thus facilitate the formation of nanorods during the annealing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the use of ultrasonic agitation as a method for reducing felting and area shrinkage during the laundering of wool fabric. Work was conducted to evaluate the changes in fibre and fabric properties after repeated exposure to ultrasonic agitation, and also the effectiveness of ultrasonic treatment to remove common stains. Fabric colour, appearance, tensile strength, dimensional stability and thickness were measured before and after each test. Ultrasonic agitation produced fine cracks in the scale structure of the fibre, but these had negligible effects on the strength and colour when compared to hand washing. Ultrasonic agitation caused less fibre migration than hand washing, with a reduced rate of thickness increase and felting. Ultrasonic agitation increased the level of stain removed from the fabric when compared with hand washing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wool fibre has a complex morphology, consisting of an outer layer of cuticle scales surrounding an inner cortex. These two components are hard to separate effectively except by using harsh chemical treatments, making it difficult to determine the susceptibility of the different components of the fibre to photoyellowing. An approach to this problem based on mechanical fibre modification is described. To expose the inner cortex of wool to different degrees, clean wool fibres were converted into ‘powders’ of various fineness via mechanical chopping, air-jet milling, ball milling or their combination. Four types of powdered wool (samples A, B, C and D) were produced with reducing particle size distributions and an increasing level of surface damage as observed using SEM. Sample A contained essentially intact short fibre snippets and sample D contained a large amount of exposed cortical materials. Samples B and C contained a mixture of short fibre snippets and cortical materials. Solid wool discs were then compressed from the corresponding powder samples in a polished stainless steel die to enable colour measurement and UV irradiation studies. ATR-FTIR studies on powder discs demonstrated a small shift in the amide I band from 1644 cm−1 for disc A to 1654 cm−1 for disc D due to the different structures of the wool cuticle and cortex, in agreement with previous studies. Similarly an increase in the intensity ratio of the amide I to amide II band (1540 cm−1) was observed for disc D, which contains a higher fraction of cortical material at the surface of the disc.

Discs prepared from sample D appeared the lightest in colour before exposure and had the slowest photoyellowing rate, whereas discs made from powders A–C with a higher level of cuticle coverage were more yellow before exposure and experienced a faster rate of photoyellowing. This suggests that the yellow chromophores of wool may be more prevalent in cuticle scales, and that wool photoyellowing occurs to a greater extent in the cuticle than in the cortex. Photo-induced chemiluminescence measurements showed that sample D had a higher chemiluminescence intensity after exposure to UVA radiation and a faster decay rate than samples A and B. Thus one of the roles of the wool cuticle may be to protect the cortex by quenching of free radical oxidation during exposure to the UV wavelengths present in sunlight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Air-atomized pure aluminium powder with 15 at.% MgB2 was mechanically milled (MMed) by using a vibrational ball mill, and MMed powders were consolidated by spark plasma sintering (SPS) to produce composite materials with high specific strength. Solid-state reactions of MMed powders have been examined by X-ray diffraction (XRD), and mechanical properties of the SPSed materials have been evaluated by hardness measurements and compression tests. Orientation images of microstructures were obtained via the electron backscatter diffraction (EBSD) technique.

The solid-state reactions in the Al–15 at.% MgB2 composite materials occurred between the MMed powders and process control agent (PCA) after heating at 773–873 K for 24 h. The products of the solid-state reaction were a combination of AlB2, Al3BC and spinel MgAl2O4. Mechanical milling (MM) processing time and heating temperatures affect the characteristics of those intermetallic compounds. As the result of the solid-state reactions in MMed powders, a hardness increase was observed in MMed powders after heating at 573–873 K for 24 h. The full density was attained for the SPSed materials from 4 h or 8 h MMed powders in the Al–15 at.% MgB2 composite materials under an applied pressure of 49 MPa at 873 K for 1 h. The microstructure of the SPSed materials fabricated from the MMed powders presented the bimodal aluminium matrix grain structure with the randomly distributions. The Al–15 at.% MgB2SPSed material from powder MMed for 8 h exhibited the highest compressive 0.2% proof strength of 846 MPa at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructural evolution and characteristics of the Ti–16Sn–4Nb powder particles and bulk alloys sintered from the powders ball-milled for various periods of time were studied. Results indicated that ball milling to 8 h led to the development of a supersaturated hcp α-Ti and partial amorphous phase due to the solid solution of Sn and Nb into Ti lattice. The bulk Ti–16Sn–4Nb alloy made from the powders ball milled for a short time, up to 2 h, exhibited a primary α and a Widmanstätten structure consisting of interlaced secondary α and β. With an increase in ball milling time up to 10 h, the microstructure evolved into a fine β phase dispersed homogeneously within α phase matrix. The microhardness values of the bulk alloy in both α- and β-phases increased with the increasing of the ball milling time and reached a plateau value at 8 h and longer, i.e. 687 and 550 HV for α- and β-phases, respectively. Likewise, the microhardness of the α phases was always higher than that of the β phases in the bulk alloys made from the powders ball milled for the same milling time.