969 resultados para WHITE-MATTER CHANGES
Resumo:
Changes in the aromatic composition as well as sensory characteristics in Verdejo white wines were analysed based on two factors: the winemaking methodology and the storing time of wine in bottles. The volatile components were determined by GLC-MS, and the sensory profile was designed and assessed according to the ISO 11035 standard. The results showed that when wines were made in oak barrels, either completely or partially, which means the wines were in contact with the lees, the levels of 1-octanol, ethyl heptanoate and ethyl decanoate were significantly affected (P menor que 0.05); the softness sensation was also influenced (P menor que 0.05). However, the amount of time the wines were stored in bottles significantly affected (P menor que 0.05) the levels of 1-hexanol, ethyl heptanoate, ethyl octanoate, ethyl decanoate, hexyl acetate, isoamyl acetate and isoamyl lactate and also an odour note (tropical fruit). The compounds with higher OAV values belong to the groups of esters and fatty acids. For these reasons, the composition and the quality of the aroma of Verdejo white wines appear to be significantly affected both by use of oak barrels in winemaking and the time the wines are stored in bottles.
Resumo:
An in vitro experiment was carried out using the Hohenheim gas production technique to evaluate 24-h gas production, apparently and truly degraded dry matter (DM), partitioning factor (PF), short chain fatty acids, crude protein (CP) and carbohydrate (CHO) fractionation of grass and multipurpose tree species (MPTS) foliage diets. Four grasses and three MPTS were used to formulate 12 diets of equal mixtures (0.5:0.5 on DM basis) of each grass with each MPTS. In vitro gas production was terminated after 24 h for each diet. True DM degradability was measured from incubated samples and combined with gas volume to estimate PF. Diets had greater (P<0.001) CP (102–183 g/kg DM) content than sole grasses (66–131 g/kg DM) and lower (P<0.001) concentrations of fibre fractions. Contrary to in vitro apparently degraded DM, in vitro truly degraded DM coefficient was greater (P<0.001) in diets (0.63–0.77) than in sole grasses (0.48–0.68). The PF was on average higher in diets than in sole grasses. The proportion of potentially degradable CP fractions (A1, B1, B2 and B3, based on the Cornell Net Carbohydrate and Protein System) in the diets ranged from 971 to 989 g/kg CP. Crude protein fractions, A and B2 were greater in diets but B1 and B3 fractions were less in diets than in sole grasses. A similar trend was also observed in the CHO fractions. Results showed that the nutritive value of the four grasses was improved when MPTS leaves were incorporated into the diet and this could ensure higher productivity of the animals.
Resumo:
Turgor regulation at reduced water contents was closely associated with changes in the elastic quality of the cell walls of individual needles and shoots of naturally drought-resistant seedlings of white spruce (Picea glauca [Moench] Voss.) and of seedlings of intermediate resistance that had been pretreated with paclobutrazol, a stress-protecting, synthetic plant-growth regulator. Paclobutrazol-treated seedlings showed marked increases in drought resistance, and pressure-volume analysis combined with Chardakov measurements confirmed observations that water stress was ameliorated during prolonged drought. Turgor was maintained in the paclobutrazol-treated and in the naturally resistant drought-stressed seedlings despite water contents near or below the turgor-loss volumes of well-watered controls. The maintenance of turgor in these seedlings was in large part a function of the dynamic process of cell wall adjustment, as reflected by marked reductions in both the saturated and turgor-loss volumes and by large increases in the elastic coefficients of the tissues. Shear and Young's moduli, calculated from pressure-volume curves and the radii and wall thicknesses of mesophyll cells, also confirmed observed changes in the elastic qualities of the cell walls. Elastic coefficients of well-watered, paclobutrazol-treated seedlings were consistently larger than those in well-watered controls and several times larger than the values in untreated plants, which succumbed rapidly to drought. In contrast, untreated seedlings that withstood prolonged drought without wilting displayed elastic coefficients similar to those in seedlings that had been treated with paclobutrazol but that had not been exposed to drought.
Resumo:
Conformational changes of a humic acid (HA) and a fulvic acid (FA) induced by iron complexation were followed by high-performance size exclusion chromatography (HPSEC) with both UV–vis and refractive index (RI) detectors. Molecular size distribution was reduced for HA and increased for FA with progressive iron complexation. Since interactions of Fe with humic components are electrostatic, it is likely that the triple-charged Fe ions formed stronger complexes with the more acidic hydrophilic and hydrated FA than with the less acidic and more hydrophobic HA. The large content of ionized carboxyl groups in FA, thus favored the formation of intra- or intermolecular bridges between the negatively charged fulvic acid molecules, and led to more compact and larger size network than for HA. Conversely, iron complexation with HA disrupted the humic conformational arrangements stabilized by only weak hydrophobic bonds into smaller-size aggregates of greater conformational stability due to formation of strong metal complexes. These results confirmed that humic molecules in solution were organized in supramolecular associations of relatively small molecules loosely bound together by dispersive interactions and hydrogen bonds, and they specifically responded to chemical changes brought about by metal additions. The present study revealed the molecular changes occurring in superstructures of natural organic matter when in metal complexes and contributed to understand and predict the environmental behavior in waters and soil of metal complexes with natural organic matter.
Resumo:
The aim of this study is to investigate the effect of particle size on the non-isothermal pyrolysis of almond shells (AS) and olive stones (OS) and to show possible differences in the composition of the different fractions obtained after milling and sieving. The results obtained from the study of different particle size of AS and OS samples show significant differences in the solid residue obtained and in the shape and overlapping degree of the peaks, especially with the smaller particle size. These differences can be due to different factors: (a) the amount of inorganic matter, which increases as particle size decreases, (b) heat and mass transfer processes, (c) different sample composition as a consequence of the milling process which may provoke changes in the structure and the segregation of the components (in addition to the ashes) increasingly changes the composition of the sample as the particle size decreases.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Railway map of routes to the White Mountains, by Harvey Boardman. It was published in 1859 by J.H. Bufford's Lith. Scale not given. Covers New Hampshire, Vermont, Massachusetts, Connecticut, Rhode Island, and portions of Maine, New York, and the province of Quebec, Canada. The image inside the map neatline is georeferenced to the surface of the earth and fit to the USA Contiguous Albers Equal Area Conic projection (Meters). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, railroad stations, drainage, selected cities, towns, villages, and points of interest (hotels, houses, etc.), state boundaries, and more. Relief shown by hachures. Includes text on routes in margins. This layer is part of a selection of digitally scanned and georeferenced historic maps of New England from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Tese de doutoramento (co-tutela), Geologia (Paleontologia e Estratigrafia), Faculdade de Ciências da Universidade de Lisboa, Université Claude Bernard Lyon 1, 2016
Resumo:
At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds (black shales) were found to have significantly lower delta15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have delta15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphoric zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which can be derived from anthropogenic sources, such as combustion and discharges from extraction and transport, and natural processes, including leakage and erosion of fossil carbon. Natural PAH sources contribute, along with biological activities and terrestrial run-off, to the organic carbon content in sediments.The Barents Sea region is far from many anthropogenic sources of PAH, but production and trans-shipment of hydrocarbons is increasing. We present data for polycyclic aromatic hydrocarbon (PAH) concentrations in bottom sediments from 510 stations in the Barents and White Seas, and along the northern coast of Norway.
Resumo:
A valid assessment of selective aerobic degradation on organic matter (OM) and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the studied alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in the oxygen regime. Several export production indices, a cholesterol-based stanol/stenol index and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20%) change only over the lateral oxygen gradients. Therefore, these compounds do not exclusively reflect surface water productivity, but are significantly altered after deposition. Two of the proxies, glycerol dibiphytanyl glycerol tetraether-based TEX86 sea surface temperature indices and indices based on phytol, phytane and pristane, did not show any trends related to oxygen. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX86, TEX86L, and TEX86H proxies. The phytol-based ratios were likely affected by the sedimentary production of pristane. Our results demonstrate the selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments along a short lateral oxygen gradient and suggest that some of the investigated proxies may be useful tracers of changing redox conditions at the sediment-water interface.