983 resultados para WASTE DISPOSAL SITE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategic funding of UID/BIO/04469/2013 unit and project ref RECI/BBB-EBI/0179/2012 (project number FCOMP-01-0124-FEDER-027462) and Xanel Vecino post-doctoral grant (ref SFRH/BPD/101476/2014) funded by Fundação para a Ciência e a Tecnologia, Portugal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] The aim of this research was to evaluate the influence of temperature, time and mass/ volume ratio on the release of sugars and polyphenols using an autohydrolysis procedure from pineapple waste. A Box-Bhenken design was used with three factors (time, temperature and mass/volume ratio) and three levels was used. All treatments were performed in triplicate. Nine central points were used. For autohydrlosysis treatments, an oil bath was used [1]. After autohydrolysis, liquid phases or hydrolysates were analyzed for glucose and fructose concentration by high performance liquid chromatography (HPLC) [2]. The FolinCiocalteu assay was used to measure total polyphenols of hydrolysates [3] and HPLC to identify these molecules [4]. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Waste cooking oils (WCO) generated from vegetable oils used at high temperatures in food frying, cause environmental problems and must be reutilized. New strategies to valorize these wastes are attracting a great scientific interest due to the important advantages offered from an economic and environmental point of view. A microbial platform can be established to convert low-value hydrophobic substrates, such as waste cooking oils, to microbial lipids (single cell oil, SCO) and other value-added bioproducts, such as lipase. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Ciências da Comunicação (área de especialização em Informação e Jornalismo)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of chemicals and chemical derivatives in agriculture and industry has contributed to their accumulation and persistence in the environment. Persistent organic pollutants (POPs) are among the environmental pollutants of most concern since, when improperly handled and disposed, they can persist in the environment, bioaccumulate through the food web, and may create serious public health and environmental problems. Development of an effective degradation process has become an area of intense research. The physical/chemical methods employed, such as volatilization, evaporation, photooxidation, adsorption, or hydrolysis, are not always effective, are very expensive, and, sometimes, lead to generation/disposal of other contaminants. Biodegradation is one of the major mechanisms by which organic contaminants are transformed, immobilized, or mineralized in the environment. A clear understanding of the major processes that affect the interactions between organic contaminants, microorganisms, and environmental matrix is, thus, important for determining persistence of the compounds, for predicting in situ transformation rates, and for developing site remediation. Information on their risks and impact and occurrence in the different environmental matrices is also important, in order to attenuate their impact and apply the appropriate remediation process. This chapter provides information on the fate of pesticides and polycyclic aromatic hydrocarbons (PAHs), their impact, bioavailability, and biodegradation. © Springer Science+Business Media Dordrecht 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, oil mill wastewater (OMW), a residue generated during olive oil extraction, was evaluated as an inducer of rhamnolipid production. Using a medium containing as sole ingredients corn steep liquor (10%, v/v), sugarcane molasses (10%, w/v) and OMW (25%, v/v), Pseudomonas aeruginosa #112 produced 4.5 and 5.1 g of rhamnolipid per liter in flasks and reactor, respectively, with critical micelle concentrations as low as 13 mg/l. Furthermore, in the medium supplemented with OMW, a higher proportion of more hydrophobic rhamnolipid congeners was observed comparing with the same medium without OMW. OMW is a hazardous waste which disposal represents a serious environmental problem; therefore, its valorization as a substrate for the production of added-value compounds such as rhamnolipids is of great interest. This is the first report of rhamnolipid production using a mixture of these three agro-industrial by-products, which can be useful for the sustainable production of rhamnolipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The initial site of myocardial infarction (MI) may influence the prevalence of ventricular late potentials (VLP), high-frequency signals, due to the time course of ventricular activation. The prevalence of VLP in a period of more than 2 years after acute MI was assessed focusing on the initially injured wall . METHODS: The prevalence of VLP in a late phase after MI (median of 924 days) in anterior/antero-septal and inferior/infero-dorsal wall lesion was analyzed using signal-averaged electrocardiogram in time domain. The diagnostic performance of the filters employed for analysis on was tested at high-pass cut-off frequencies of 25 Hz, 40 Hz and 80 Hz. RESULTS: The duration of the ventricular activation and its terminal portion were larger in inferior than anterior infarction, at high-pass cut-off frequencies of 40 Hz and 80 Hz. In patients with ventricular tachycardia, these differences were more remarked. The prevalence of ventricular late potentials was three times greater in inferior than anterior infarction. CONCLUSION: Late after myocardial infarction, the prevalence and the duration of ventricular late potentials are greater in lesions of inferior/infero-dorsal than anterior/antero-septal wall confirming their temporal process, reflecting their high-frequency content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sludge provides valuable nutrients to soil. Application of sludge to land is subject to a number of limitations. Its use as a soil conditioner represents a "beneficial reuse option". Primary and secondary sludge from Dublin city is treated in Ringsend treatment plant where it undergoes thermal drying. This study investigates the feasibility of land application of thermally dried biosolids (TDB) from Ringsend treatment plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy from waste (E/W) technologies in the form o f biogas plants, CHP plants and other municipal solid waste (MSW) conversion technologies, have been gaining steady ground in the provision o f energy throughout Europe and the UK. Urban Waste Water Treatment Plants (UWWTP) are utilising much o f the same biochemical processes common to these E/W plants. Previous studies on Centralised Anaerobic Digestion (CAD) within Ireland found that the legislative and economic conditions were not conducive to such an operation on the grounds o f low energy price for electric and heat energy, and due to the restrictive nature o f the allowable feedstocks. Recent changes to the Irish REFIT tariff on energy produced from Anaerobic digestion; alterations to the regulation o f the allowable use o f animal by products(ABP); the recent enactment o f the Renewable Energy D irective (09/28/EC) and a subsequent review o f the draft Biowaste Directive (2001) required that the issue o f decentralised energy production in Ireland be reassessed. In this instance the feasibility study is based on a extant rural community, centred around the village o f Woodford Co Galway. The review found that the prevailing conditions were now such that it was technically and economically feasible for this biochemical process to provide energy and waste treatment facilities at the above location. The review also outlines the last item which is preventing this process from becoming achievable, specifically the lack o f a digestate regulation on land spreading which deals specifically with biowaste. The study finds that the implementation o f the draft EU biowaste regulations, with amendments for Cr and Hg levels to match the proposed Irish regulation for compost, would ensure that Ireland has some o f the most restrictive regulations in Europe for this application. The delay in completing this piece o f legislation is preventing national energy and waste issues from being resolved in a planned and stepwise fashion. A proposed lay out for the new Integrated Waste from Energy Plant (IW/EP) is presented. Budget economic projections and alternative revenue streams are outlined. Finally a review o f the national policies regarding the Rural Development Plan (RDP), the Rural Planning Guidelines (RPG) and the National Renewable Energy Action Plan (NREAP) are examined against the relevant EU directives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aughinish Alumina Limited (AAL) have an obligation by terms of their Integrated Pollution Control Licence (IPCL) and Planning Permission to establish vegetation on the red mud stack at their plant at Aughinish, Co. Limerick. High pH and high exchangeable sodium percentage are the main known factors limiting the establishment of vegetation on red mud. Gypsum addition has been known to assist in alleviating these problems in other countries. However, there is no experience or published information on red mud rehabilitation under Irish conditions. Red mud with organic and inorganic waste-derived ameliorants as well as selected grassland species were examined under laboratory controlled environment conditions as well as in field plot trials. Also, in order that it would be economically achievable, the research utilised locally available waste products as the organic amendments. Screening trials found that physical constraints severely limit plant germination and growth in red mud. Gypsum addition effectively lowers pH, exchangeable sodium percentage and the availability of A1 and Fe in the mud. A strong relationship between pH, ESP and A1 levels was also found. Gypsum addition increased germination percentages and plant growth for all species investigated. Greenhouse trials demonstrated that organic wastes alone did not greatly improve conditions for plant growth but when used in conjunction with gypsum plant performances for all species investigated was significantly increased. There was a high mortality rate for grasses in non-gypsum treatments. An emerging trend of preferential iron uptake and calcium deficiency in non-gypsum treatments was found at pot screening stage. Species also displayed manganese and magnesium deficiencies.