985 resultados para Visible spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation and direct observation of triplet 2,4-dimethylene-1,3- cyclobutanediyl (1), the non-Kekule isomer of benzene, is described. The biradical was generated by photolysis of 5,6-dimethylene-2,3- diazabicyclo[2.1.1]hex-2-ene (2) (which was synthesized in several steps from benzvalene) under cryogenic, matrix-isolation conditions. Biradical 1 was characterized by EPR spectroscopy (‌‌‌‌‌│D/hc│ =0.0204 cm^(-1), │E/hc│ =0.0028 cm^(-1)) and found to have a triplet ground state. The Δm_s= 2 transition displays hyperfine splitting attributed to a 7.3-G coupling to the ring methine and a 5.9-G coupling to the exocyclic methylene protons. Several experiments, including application of the magnetophotoselection (mps) technique in the generation of biradical 1, have allowed a determination of the zero-field triplet sublevels as x = -0.0040, y = +0.0136, and z = -0.0096 cm^(-1), where x and y are respectively the long and short in-plane axes and z the out-of-plane axis of 1.

Triplet 1 is yellow-orange and displays highly structured absorption (λ_(max)= 506 nm) and fluorescence (λ_(max) = 510 nm) spectra, with vibronic spacings of 1520 and 620 cm^(-1) for absorption and 1570 and 620 cm^(-1) for emission. The spectra were unequivocally assigned to triplet 1 by the use of a novel technique that takes advantage of the biradical's photolability. The absorption є = 7200 M^(-1) cm^(-1) and f = 0.022, establishing that the transition is spin-allowed. Further use of the mps technique has demonstrated that the transition is x-polarized, and the excited state 1s therefore of B_(1g) symmetry, in accord with theoretical predictions.

Thermolysis or direct photolysis of diazene 2 in fluid solution produces 2,4- dimethylenebicyclo[l.l.0]butane (3), whose ^(l)H NMR spectrum (-80°C, CD_(2)Cl_(2)) consists of singlets at δ 4.22 and 3.18 in a 2:1 ratio. Compound 3 is thermally unstable and dimerizes with second-order kinetics between -80 and -25°C (∆H^(‡) = 6.8 kcal mol^(-1), (∆s^(‡) = -28 eu) by a mechanism involving direct combination of two molecules of 3 in the rate-determining step. This singlet-manifold reaction ultimately produces a mixture of two dimers, 3,8,9- trimethylenetricyclo[5.1.1.0^(2,5)]non-4-ene (75) and trans-3,10-dimethylenetricyclo[6.2.0.0^(2,5)]deca-4,8-diene (76t), with the former predominating. In contrast, triplet-sensitized photolysis of 2, which leads to triplet 1, provides, in addition to 75 and 76t, a substantial amount of trans-5,10- dimethylenetricyclo[6.2.0.0^(3,6)]deca-3,8-diene (77t) and small amounts of two unidentified dimers.

In addition, triplet biradical 1 ring-closes to 3 in rigid media both thermally (77-140 K) and photochemically. In solution 3 forms triplet 1 upon energy transfer from sensitizers having relatively low triplet energies. The implications of the thermal chemistry for the energy surfaces of the system are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the energy levels and the probabilities of transition between them, by the formal analysis of observed electronic, vibrational, and rotational band structures, forms the direct goal of all investigations of molecular spectra, but the significance of such data lies in the possibility of relating them theoretically to more concrete properties of molecules and the radiation field. From the well developed electronic spectra of diatomic molecules, it has been possible, with the aid of the non-relativistic quantum mechanics, to obtain accurate moments of inertia, molecular potential functions, electronic structures, and detailed information concerning the coupling of spin and orbital angular monenta with the angular momentum of nuclear rotation. The silicon fluori1e molecule has been investigated in this laboratory, and is found to emit bands whose vibrational and rotational structures can be analyzed in this detailed fashion.

Like silicon fluoride, however, the great majority of diatomic molecules are formed only under the unusual conditions of electrical discharge, or in high temperature furnaces, so that although their spectra are of great theoretical interest, the chemist is eager to proceed to a study of polyatomic molecules, in the hope that their more practically interesting structures might also be determined with the accuracy and assurance which characterize the spectroscopic determinations of the constants of diatomic molecules. Some progress has been made in the determination of molecule potential functions from the vibrational term values deduced from Raman and infrared spectra, but in no case can the calculations be carried out with great generality, since the number of known term values is always small compared with the total number of potential constants in even so restricted a potential function as the simple quadratic type. For the determination of nuclear configurations and bond distances, however, a knowledge of the rotational terms is required. The spectra of about twelve of the simpler polyatomic molecules have been subjected to rotational analyses, and a number of bond distances are known with considerable accuracy, yet the number of molecules whose rotational fine structure has been resolved even with the most powerful instruments is small. Consequently, it was felt desirable to investigate the spectra of a number of other promising polyatomic molecules, with the purpose of carrying out complete rotational analyses of all resolvable bands, and ascertaining the value of the unresolved band envelopes in determining the structures of such molecules, in the cases in which resolution is no longer possible. Although many of the compounds investigated absorbed too feebly to be photographed under high dispersion with the present infrared sensitizations, the location and relative intensities of their bands, determined by low dispersion measurements, will be reported in the hope that these compounds may be reinvestigated in the future with improved techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured spectroscopic and laser action properties of a novel 8-position substituted pyrromethene-BF2, namely 1,3,5,7-tetramethyl-2,6-diethyl-8-n-propyl pyrromethene-BF2 complex. The laser action was performed with the corresponding dye solution in ethanol, which was placed in a Littman-type laser cavity pumped by the second harmonic of a Q-switched Nd:YAG laser. The spectroscopic measurements clearly indicated that the corresponding dye solution in ethanol exhibited intense absorption in the visible spectral region with large fluorescence quantum yield. It possesses rather low triplet-triplet absorption in the spectral region 460-550 nm and almost negligible triplet-triplet absorption in the lasing spectral region. As a consequence, it lases nearly as efficiently as commercially available benchmark laser dyes such as Rhodamine-6G and outperformed them in wavelength tunability in our laser cavity and pump geometry. (C) 2002 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time-domain spectrometer for use in the terahertz (THz) spectral range was designed and constructed. Due to there being few existing methods of generating and detecting THz radiation, the spectrometer is expected to have vast applications to solid, liquid, and gas phase samples. In particular, knowledge of complex organic chemistry and chemical abundances in the interstellar medium (ISM) can be obtained when compared to astronomical data. The THz spectral region is of particular interest due to reduced line density when compared to the millimeter wave spectrum, the existence of high resolution observatories, and potentially strong transitions resulting from the lowest-lying vibrational modes of large molecules.

The heart of the THz time-domain spectrometer (THz-TDS) is the ultrafast laser. Due to the femtosecond duration of ultrafast laser pulses and an energy-time uncertainty relationship, the pulses typically have a several-THz bandwidth. By various means of optical rectification, the optical pulse carrier envelope shape, i.e. intensity-time profile, can be transferred to the phase of the resulting THz pulse. As a consequence, optical pump-THz probe spectroscopy is readily achieved, as was demonstrated in studies of dye-sensitized TiO2, as discussed in chapter 4. Detection of the terahertz radiation is commonly based on electro-optic sampling and provides full phase information. This allows for accurate determination of both the real and imaginary index of refraction, the so-called optical constants, without additional analysis. A suite of amino acids and sugars, all of which have been found in meteorites, were studied in crystalline form embedded in a polyethylene matrix. As the temperature was varied between 10 and 310 K, various strong vibrational modes were found to shift in spectral intensity and frequency. Such modes can be attributed to intramolecular, intermolecular, or phonon modes, or to some combination of the three.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents structural investigations of molecular ions and ionic clusters using vibrational predissociation spectroscopy. Experimentally, a pulsed beam of the mass-selected ion is crossed by a tunable infrared laser beam generated by a Nd:YAG pumped LiNbO_3 optical parametric oscillator. The resulting fragment ion is mass-analyzed and detected, with its intensity as a function of the laser wavelength being the "action" spectrum of the parent ion. In the case of SiH_7^+, we observed a vibrational band centered at 3866 cm^(-1) with clear P, Q, R branches, which is assigned as a perturbed H_2 stretch. The absence of a second H_2 band suggests that the ion forms a symmetric complex with a structure H_2•SiH_3^+•H_2 , in contrast to the species CH_7^+, which has the structure CH_5^+•H_2. The infrared spectra of NO_2^+(H_2O)_n clusters exhibit a marked change with cluster size, indicating that an intracluster reaction occurs with sufficient solvation. Specifically, in NO_2^+(H_2O)_n clusters where n≤3, H_2O binds to a nitronium ion core; but at n=4 the NO_2^+ reacts, transforming the cluster to a new structure of H_3O^+•(H_2O)_(n_2)•HNO_3. For protonated chlorine nitrate, we have observed two distinct isomers previously predicted by ab initio calculations: NO_2^+•(HOC1), the lowest energy isomer, and (ClO)(HO)NO^+, a covalently bonded isomer about 20 kcal/mol higher in energy. Both isomers decompose to NO_2^+ and HOCl upon photo-excitation. These results for HClONO_2^+ lend strong support to the involvement of an ionic mechanism in the reaction of ClONO_2 on polar stratospheric cloud surfaces, a critical step in the dramatic springtime depletion of ozone over Antarctica. Current research activities on halide-solvent clusters and metal-ligand complexes as well as technological improvements of the apparatus are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presented doctoral research utilizes time-resolved spectroscopy to characterize protein dynamics and folding mechanisms. We resolve millisecond-timescale folding by coupling time-resolved fluorescence energy transfer (trFRET) to a continuous flow microfluidic mixer to obtain intramolecular distance distributions throughout the folding process. We have elucidated the folding mechanisms of two cytochromes---one that exhibits two-state folding (cytochrome cb562) and one that has both a kinetic refolding intermediate ensemble and a distinct equilibrium unfolding intermediate (cytochrome c552). Our data reveal that the distinct structural features of cytochrome c552 contribute to its thermostability.

We have also investigated intrachain contact dynamics in unfolded cytochrome cb562 by monitoring electron transfer, which occurs as the heme collides with a ruthenium photosensitizer, covalently bound to residues along the polypeptide. Intrachain diffusion for chemically denatured proteins proceeds on the microsecond timescale with an upper limit of 0.1 microseconds. The power-law dependence (slope = -1.5) of the rate constants on the number of peptide bonds between the heme and Ru complex indicate that cytochrome cb562 is minimally frustrated.

In addition, we have explored the pathway dependence of electron tunneling rates between metal sites in proteins. Our research group has converted cytochrome b562 to a c-type cytochrome with the porphyrin covalently bound to cysteine sidechains. We have investigated the effects of the changes to the protein structure (i.e., increased rigidity and potential new equatorial tunneling pathways) on the electron transfer rates, measured by transient absorption, in a series of ruthenium photosensitizer-modified proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the size of transistors approaching the sub-nanometer scale and Si-based photonics pinned at the micrometer scale due to the diffraction limit of light, we are unable to easily integrate the high transfer speeds of this comparably bulky technology with the increasingly smaller architecture of state-of-the-art processors. However, we find that we can bridge the gap between these two technologies by directly coupling electrons to photons through the use of dispersive metals in optics. Doing so allows us to access the surface electromagnetic wave excitations that arise at a metal/dielectric interface, a feature which both confines and enhances light in subwavelength dimensions - two promising characteristics for the development of integrated chip technology. This platform is known as plasmonics, and it allows us to design a broad range of complex metal/dielectric systems, all having different nanophotonic responses, but all originating from our ability to engineer the system surface plasmon resonances and interactions. In this thesis, we demonstrate how plasmonics can be used to develop coupled metal-dielectric systems to function as tunable plasmonic hole array color filters for CMOS image sensing, visible metamaterials composed of coupled negative-index plasmonic coaxial waveguides, and programmable plasmonic waveguide network systems to serve as color routers and logic devices at telecommunication wavelengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-step electron tunneling, or “hopping,” has become a fast-developing research field with studies ranging from theoretical modeling systems, inorganic complexes, to biological systems. In particular, the field is exploring hopping mechanisms in new proteins and protein complexes, as well as further understanding the classical biological hopping systems such as ribonuclease reductase, DNA photolyases, and photosystem II. Despite the plethora of natural systems, only a few biologically engineered systems exist. Engineered hopping systems can provide valuable information on key structural and electronic features, just like other kinds of biological model systems. Also, engineered systems can harness common biologic processes and utilize them for alternative reactions. In this thesis, two new hopping systems are engineered and characterized.

The protein Pseudomonas aeruginosa azurin is used as a building block to create the two new hopping systems. Besides being well studied and amenable to mutation, azurin already has been used to successfully engineer a hopping system. The two hopping systems presented in this thesis have a histidine-attached high potential rhenium 4,7-dimethyl-1,10-phenanthroline tricarbonyl [Re(dmp)(CO)3] + label which, when excited, acts as the initial electron acceptor. The metal donor is the type I copper of the azurin protein. The hopping intermediates are all tryptophan, an amino acid mutated into the azurin at select sites between the photoactive metal label and the protein metal site. One system exhibits an inter-molecular hopping through a protein dimer interface; the other system undergoes intra-molecular multi-hopping utilizing a tryptophan “wire.” The electron transfer reactions are triggered by excitation of the rhenium label and monitored by UV-Visible transient absorption, luminescence decays measurements, and time-resolved Infrared spectroscopy (TRIR). Both systems were structurally characterized by protein X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of variable-angle, electron energy-loss spectroscopy has been used to study the electronic spectroscopy of the diketene molecule. The experiment was performed using incident electron beam energies of 25 eV and 50 eV, and at scattering angles between 10° and 90°. The energy-loss region from 2 eV to 11 eV was examined. One spin-forbidden transition has been observed at 4.36 eV and three others that are spin-allowed have been located at 5.89 eV, 6.88 eV and 7.84 eV. Based on the intensity variation of these transitions with impact energy and scattering angle, and through analogy with simpler molecules, the first three transitions are tentatively assigned to an n → π* transition, a π - σ* (3s) Rydberg transition and a π → π* transition.

Thermal decomposition of chlorodifluoromethane, chloroform, dichloromethane and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was investigated by the technique of electron energy-loss spectroscopy, using the impact energy of 50 eV and a scattering angle of 10°. The pyrolytic reaction follows a hydrogen-chloride α-elimination pathway. The difluoromethylene radical was produced from chlorodifluoromethane pyrolysis at 900°C and identified by its X^1 A_1 → A^1B_1 band at 5.04 eV.

Finally, a number of exploratory studies have been performed. The thermal decomposition of diketene was studied under flash vacuum pressures (1-10 mTorr) and temperatures ranging from 500°C to 1000°C. The complete decomposition of the diketene molecule into two ketene molecules was achieved at 900°C. The pyrolysis of trifluoromethyl iodide molecule at 1000°C produced an electron energy-loss spectrum with several iodine-atom, sharp peaks and only a small shoulder at 8.37 eV as a possible trifluoromethyl radical feature. The electron energy-loss spectrum of trichlorobromomethane at 900°C mainly showed features from bromine atom, chlorine molecule and tetrachloroethylene. Hexachloroacetone decomposed partially at 900°C, but showed well-defined features from chlorine, carbon monoxide and tetrachloroethylene molecules. Bromodichloromethane molecule was investigated at 1000°C and produced a congested, electron energy-loss spectrum with bromine-atom, hydrogen-bromide, hydrogen-chloride and tetrachloroethylene features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-of-flight measurements of energetic He atoms, field ionization of cryogenic liquid helium clusters, and time-of-flight and REMPI spectroscopy of radical salt clusters were investigated experimentally. The excited He atoms were generated in a corona discharge. Two strong neutral peaks were observed, accompanied by a prompt photon peak and a charged peak. All peaks were correlated with the pulsing of the discharge. The neutral hyperthermal and metastable atoms were formed by different mechanisms at different stages of the corona discharge. Positively charged helium droplets were produced by ionization of liquid helium in an electrostatic spraying experiment. The fluid emerging from a thin glass capillary was ionized by a high voltage applied to a needle inside the capillary. Fine droplets (less than 10 µm in diameter) were produced in showers with currents as high as 0.4 µA at 2-4 kV. The high currents resulting from field ionization in helium and the low surface tension of He I, led to charge densities that greatly exceeded the Rayleigh limit, thus resulting in coulombic explosion of the liquid. In contrast, liquid nitrogen formed a well-defined Taylor cone with droplets having diameters comparable to the jet (≈100 µm) at lower currents (10 nA) and higher voltages (8 kV). The metal-halide clusters of calcium and chlorine were generated by laser ablation of calcium metal in a Ar/CCl4 expansion. A visible spectrum of the Ca2Cl3 cluster was observed from 651 to 630 nm by 1 +1' REMPI. The spectra were composed of a strong origin band at 15 350.8 cm-1 and several weak vibronic bands. Density functional calculations predicted three minimum energy isomers. The spectrum was assigned to the 2B2 ← X 2A1 transition of a planar C2V structure having a ring of two Cl and two Ca atoms and a terminal Cl atom. The ring isomer of Ca2Cl3 has the unpaired electron localized on one Ca2+ ion to form a Ca+ chromophore. A second electronic band of Ca2Cl3 was observed at 720 nm. The band is sharply different from the 650 nm band and likely due to a different isomer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the laser-induced periodic structure with different spatial characteristics on the surface of polished ZnO single-crystalline by high repetition rate femtosecond laser pulses. This study demonstrates that, using different laser parameters and irradiation conditions, ZnO nanoripples and nanorods were successfully prepared. We have investigated the surface by means of scanning electron microscope (SEM), Raman scattering and photoluminescence (PL). We propose that second-order harmonic has a strong influence on the formation of nanostructures. (c) 2007 Elsevier B.V All rights reserved.