1000 resultados para Vectorial structure
Resumo:
The title compound, C18H16N2O, crystallizes in the triclinic space group P1, with four independent molecules in the asymmetric unit wherein two molecules have an irregular -ac, -ac, +ap conformation (ap, antiperiplanar; ac, anticlinal), while the other molecules exhibit a different, +ac, +ac, +ap conformation. The planar (r.m.s. deviation = 0.006 A in each of the four molecules) quinoline ring systems of the four molecules are oriented at dihedral angles of 32.8 (2), 33.4 (2), 31.7 (2) and 32.3 (2)degrees with respect to the benzene rings. Intramolecular N-H...N interactions occur in all four independent molecules. The crystal packing is stabilized by intermolecular N-H...O and C-H...O hydrogen bonds, and are further consolidated by C-H...pi and pi-pi stacking interactions centroid-centroid distances = 3.728 (3), 3.722 (3), 3.758 (3) and 3.705 (3) A].
Resumo:
Quantum mechanical calculations at all valence complete neglect of differential overlap (CNDO/2) and self-consistent charge extend Huckel (SCC-EH) and the Pi electron Pariser-Parr-Pople with limited configuration interaction (PPP-LCI) levels of approximation have been accomplished for monothiobiuret and dithiobiuret. From the calculated results, a discussion of the electronic structure, photoelectron and electronic spectra and the conformational stability are given. The electronic and1H nmr spectra are also reported. A trans-cis-CONHCS-structure is found to be the stable conformation for monothiobiuret consistent with other evidences.
Resumo:
The monohydrate of the heptapeptide t-butyloxycarbonyl-(L-valyl-α-aminoiso-butyryl)3-L-valyl methyl ester crystallizes in the orthorhombic space group P212121 with four molecules in a unit cell with the dimensions α= 9.375, b = 19.413 and c = 25.878 ÅA. The structure has been solved by direct methods and refined to an R value of 0.059 for 3633 observed reflections. The molecule in the structure exists as a slightly distorted 310-helix stabilized by five 4 -> 1 intramolecular hydrogen bonds, indicating the overwhelming influence of α-aminoisobutyryl (Aib) residues in dictating helical fold even when a majority of residues in the peptide have a low intrinsic propensity to be in helices. Contrary to what is expected in helical structures, the valyl side chains, two of which are disordered, exhibit all three possible conformations. The molecules arrange themselves in a head-to-tail fashion along the c-axis. The columns thus generated pack nearly hexagonally in the crystal.
Resumo:
We report a precise measurement of the hyperfine interval in the 2P(1/2) state of Li-7. The transition from the ground state (D-1 line) is accessed using a diode laser and the technique of saturated-absorption spectroscopy in hot Li vapor. The interval is measured by locking an acousto-optic modulator to the frequency difference between the two hyperfine peaks. The measured interval of 92.040(6) MHz is consistent with an earlier measurement reported by us using an atomic-beam spectrometer Das and Natarajan, J. Phys. B 41, 035001 (2008)]. The interval yields the magnetic dipole constant in the P-1/2 state as A = 46.047(3), which is discrepant from theoretical calculations by > 80 kHz.
Resumo:
Experiments are performed to determine the mass and stiffness variations along the wing of the blowfly Calliphora. The results are obtained for a pairs of wings of 10 male flies and fresh wings are used. The wing is divided into nine locations along the span and seven locations along the chord based on venation patterns. The length and mass of the sections is measured and the mass per unit length is calculated. The bending stiffness measurements are taken at three locations, basal (near root), medial and distal (near tip) of the fly wing. Torsional stiffness measurements are also made and the elastic axis of the wing is approximately located. The experimental data is then used for structural modeling of the wing as a stepped cantilever beam with nine spanwise sections of varying mass per unit lengths, flexural rigidity (EI) and torsional rigidity (GJ) values. Inertial values of nine sections are found to approximately vary according to an exponentially decreasing law over the nine sections from root to tip and it is used to calculate an approximate value of Young's modulus of the wing biomaterial. Shear modulus is obtained assuming the wing biomaterial to be isotropic. Natural frequencies, both in bending and torsion, are obtained by solving the homogeneous part of the respective governing differential equations using the finite element method. The results provide a complete analysis of Calliphora wing structure and also provide guidelines for the biomimetic structural design of insect-scale flapping wings.
Resumo:
The torsional potential functions Vt(phi) and Vt(psi) around single bonds N--C alpha and C alpha--C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (phi, psi)-plane with the value of Vtot(phi, psi), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in L-configuration, are Vt(phi) = 1.0 cos (phi + 60 degrees); Vt(psi) = 0.5 cos (psi + 60 degrees) - 1.0 cos (2 psi + 30 degrees) - 0.5 cos (3 psi + 30 degrees). The dipeptide energy maps Vtot(phi, psi) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line psi = 0 degrees. These functions derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.
Resumo:
l-Valyl-l-lysine hydrochloride, C11N3O3H23 HCl, rystallizes in the monoclinic space group P2, with a = 5.438(5), b = 14.188(5), c = 9.521(5) Å, β= 95.38(2)° and Z = 2. The crystal structure, solved by direct methods, refined to R = 0.036, using full matrix least-squares method. The peptide exists in a zwitterionic form, with the N atom of the lysine side-chain protonated. The two γ-carbons of the valine side-chain have positional disorder, giving rise to two conformations, χ111= -67.3 and 65.9°, one of which (65.9°) is sterically less favourable and has been found to be less popular amongst residues branching at β-C. The lysine side-chain has the geometry of g− tgt, not seen in crystal structures of the dipeptides reported so far. Interestingly, χ32 (63.6°) of lysine side-chain has a gauche+ conformation unlike in most of the other tructures, where it is trans. The neighbouring peptide molecules are hydrogen bonded in a head-to-tail fashion, a rather uncommon interaction in lysine peptide structures. The structure shows considerable similarity with that of l-Lys-l-Val HO in conformational angles and H-bond interactions [4].
Resumo:
Sym-homospermidine, [formula; see text] is a naturally occurring rare-polyamine found in relatively large concentration in sandal leaves. As part of our studies on structure and interactions of polyamines, ym-homospermidine was purified from sandal leaves and its structure was determined by single crystal X-ray diffraction technique. The phosphate salt of the molecule crystallized in the triclinic space group P1- with a = 8.246(1)A, b = 8.775(1)A, c = 15.531(2)A, alpha = 74.20(1) degrees, beta = 88.36(1) degrees and gamma = 65.41(1) degrees. The structure was determined by direct methods and refined to a final R factor of 5.4% for 2087 reflections with magnitude of F(obs) greater than 5 sigma [F(obs)]. The amine exists in its most favourable all trans conformation. For each amine molecule three phosphate groups exist in the crystal structure, suggesting that two of the oxygens of each phosphate group are protonated. There is also a single water molecule in the asymmetric unit in contrast to that of spermidine phosphate which has 3 water molecules. These differences probably reflect the hydrogen bonding properties of mono-ionic and di-ionic phosphate groups. The structure is predominantly stabilized by a network of hydrogen bonds.
Resumo:
The structure of [Cu4L2(bipy)4(µ3-OH)2][ClO4]4 containing a Vitamin B6 ligand, pyridoxine (5-hydroxy-6-methylpyridine-3,4-dimethanol, HL), and 2,2′-bipyridine (bipy) has been determined by single-crystal X-ray analysis. This is the first report on a copper(II) complex having a ‘stepped-cubane’ structure. The compound crystallizes in the triclinic space group P[1 with combining macron](Z= 1) with a= 11.015(3), b= 11.902(1), c= 13.142(2)Å, α= 105.07(1), β= 102.22(1) and γ= 99.12(1)°; R= 0.054). The co-ordination geometry around each copper is trigonally distorted square pyramidal. Two of the basal sites are occupied by bipyridyl nitrogens in a bidentate fashion. The remaining basal positions for Cu(1) are filled by a phenolic oxygen and a 4-hydroxymethyl oxygen of the L moiety, whereas for Cu(2) they are occupied by two µ3-OH oxygens. The axial sites are occupied by a µ3-OH oxygen and the 4-hydroxymethyl oxygen of the same pyridoxine for Cu(1) and Cu(2), respectively. Both the bridging nature of the 4-hydroxymethyl oxygen of the L moiety and the unsymmetrical bridging nature of the µ3-OH groups with axial–equatorial bridging are novel features. The structure is discussed in relation to stepped-cubane structures reported in the literature. A comparative study is also made with µ3-hydroxo-bridged copper(II) complexes. Both the plasticity effect of CuII and the stacking interactions between the various rings appear to be important in stabilizing this unusual structure.
Resumo:
Polyamines are some of the most important and ubiquitous small molecules that modulate several functions of plant, animal and bacterial cells. Despite the simplicity of their chemical structure, their specific interactions with other biomolecules cannot be explained solely on the basis of their electrostatic properties. To evolve a structural understanding on the specificity of these interactions it is necessary to determine the structure of complexes of polyamines with other, representative biomolecules. This paper reports the structure of the 1:2 complex of hexanediamine and L-glutamic acid. The complex crystallizes in the monoclonic space group P2(1) with a = 5.171(1) angstrom, b = 22.044(2) angstrom, c = 10.181(2) angstrom and beta = 104.51(1)-degrees. The structure was refined to an R factor of 6.6%. The structures of these complexes not only suggest the importance of hydrogen-bonding interactions of polyamines but also provide some insight into other complementary interactions probably important for the specificity of biomolecular interactions.