988 resultados para VITRO ANTIPROTOZOAL ACTIVITY
Resumo:
This review considers microbial inocula used in in vitro systems from the perspective of their ability to degrade or ferment a particular substrate, rather than the microbial species that it contains. By necessity, this required an examination of bacterial, protozoal and fungal populations of the rumen and hindgut with respect to factors influencing their activity. The potential to manipulate these populations through diet or sampling time are examined, as is inoculum preparation and level. The main alternatives to fresh rumen fluid (i.e., caecal digesta or faeces) are discussed with respect to end-point degradabilities and fermentation dynamics. Although the potential to use rumen contents obtained from donor animals at slaughter offers possibilities, the requirement to store it and its subsequent loss of activity are limitations. Statistical modelling of data, although still requiring a deal of developmental work, may offer an alternative approach. Finally, with respect to the range of in vitro methodologies and equipment employed, it is suggested that a degree of uniformity could be obtained through generation of a set of guidelines relating to the host animal, sampling technique and inoculum preparation. It was considered unlikely that any particular system would be accepted as the 'standard' procedure. However, before any protocol can be adopted, additional data are required (e.g., a method to assess inoculum 'quality' with respect to its fermentative and/or degradative activity), preparation/inoculation techniques need to be refined and a methodology to store inocula without loss of efficacy developed. (c) 2005 Elsevier B.V. All rights reserved.
In vitro cumulative gas production techniques: History, methodological considerations and challenges
Resumo:
Methodology used to measure in vitro gas production is reviewed to determine impacts of sources of variation on resultant gas production profiles (GPP). Current methods include measurement of gas production at constant pressure (e.g., use of gas tight syringes), a system that is inexpensive, but may be less sensitive than others thereby affecting its suitability in some situations. Automated systems that measure gas production at constant volume allow pressure to accumulate in the bottle, which is recorded at different times to produce a GPP, and may result in sufficiently high pressure that solubility of evolved gases in the medium is affected, thereby resulting in a recorded volume of gas that is lower than that predicted from stoichiometric calculations. Several other methods measure gas production at constant pressure and volume with either pressure transducers or sensors, and these may be manual, semi-automated or fully automated in operation. In these systems, gas is released as pressure increases, and vented gas is recorded. Agitating the medium does not consistently produce more gas with automated systems, and little or no effect of agitation was observed with manual systems. The apparatus affects GPP, but mathematical manipulation may enable effects of apparatus to be removed. The amount of substrate affects the volume of gas produced, but not rate of gas production, provided there is sufficient buffering capacity in the medium. Systems that use a very small amount of substrate are prone to experimental error in sample weighing. Effect of sample preparation on GPP has been found to be important, but further research is required to determine the optimum preparation that mimics animal chewing. Inoculum is the single largest source of variation in measuring GPP, as rumen fluid is variable and sampling schedules, diets fed to donor animals and ratios of rumen fluid/medium must be selected such that microbial activity is sufficiently high that it does not affect rate and extent of fermentation. Species of donor animal may also cause differences in GPP. End point measures can be mathematically manipulated to account for species differences, but rates of fermentation are not related. Other sources of inocula that have been used include caecal fluid (primarily for investigating hindgut fermentation in monogastrics), effluent from simulated rumen fermentation (e.g., 'Rusitec', which was as variable as rumen fluid), faeces, and frozen or freeze-dried rumen fluid (which were both less active than fresh rumen fluid). Use of mixtures of cell-free enzymes, or pure cultures of bacteria, may be a way of increasing GPP reproducibility, while reducing reliance on surgically modified animals. However, more research is required to develop these inocula. A number of media have been developed which buffer the incubation and provide relevant micro-nutrients to the microorganisms. To date, little research has been completed on relationships between the composition of the medium and measured GPP. However, comparing GPP from media either rich in N or N-free, allows assessment of contributions of N containing compounds in the sample. (c) 2005 Published by Elsevier B.V.
Resumo:
Fusarium oxysporum f.sp. lycopersici (Fol) is the causal agent of the Fusarium wilt disease of tomato. Soil fumigant (mainly methyl bromide) applications are in use for its control. With the increasing environmental awareness, biological control methods are under investigation for their effectiveness, including the use of antagonists. Pseudomonas oryzihabitans (=Flavimonas oryzihabitans), a symbiont of the entomopathogenic nematode Steinernema abbasi was investigated as an antagonism of a Fol isolate in two laboratory and two glasshouse experiments. Bacteria and cell-free filtrate antifungal activity were tested both in dual cultures and in broth culture. In pot experiments, suspensions of bacteria in five concentrations (106, 105, 104, 103 and 102 cells/ml) were tested for their ability to control the pathogen at 25±3°C. In all tests the bacterium significantly inhibited the growth of Fol mycelium in vitro. Similar results were obtained when the bacterium was also tested against Fusarium oxysporum f.sp. radicis lycopersici and against Rhizoctonia solani. Moreover, when it was introduced into the soil, it was able to suppress the Fusarium wilt of tomato.
Resumo:
Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.
Resumo:
As a consequence of its widespread use as an antimicrobial agent in consumer goods, triclosan has become distributed ubiquitously across the ecosystem, and recent reports that it can cause endocrine disruption in aquatic species has increased concern. It is reported here that triclosan possesses intrinsic oestrogenic and androgenic activity in a range of assays in vitro which could provide some explanation for the endocrine disrupting properties described in aquatic populations. In terms of oestrogenic activity, triclosan displaced [H-3]oestradiol from oestrogen receptors (ER) of MCF7 human breast cancer cells and from recombinant human ER alpha/ER beta. Triclosan at 10(-5) M completely inhibited the induction of the oestrogen-responsive ERE-CAT reporter gene in MCF7 cells by 10(-10) M 17 beta-oestradiol and the stimulation of growth of MCF7 human breast cancer cells by 10(-10) M 17 beta-oestradiol. On its own, 1 mu M triclosan increased the growth of MCF7 cells over 21 days. Triclosan also had androgenic activity. It displaced [H-3]testosterone from binding to the ligand binding domain of the rat androgen receptor (AR). Triclosan was able to inhibit the induction of the androgen-responsive LTR-CAT reporter gene in S115 mouse mammary tumour cells by 10(-9) M testosterone and in T47D human breast cancer cells by 10(-8) M testosterone at concentrations of 10(-7) M and 10(-6) M, respectively. Triclosan at 2 x 10(-5) M antagonized the stimulation of the growth of S115+A mouse mammary tumour cells by 10(-9) M testosterone. The finding that triclosan has oestrogenic and androgenic activity warrants further investigation in relation to both endocrine disruption of aquatic wildlife and any possible impact on human health. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Under conditions of iron limitation Pseudomonas fluorescens ATCC 17400 produces two siderophores, pyoverdine, and a second siderophore quinolobactin, which itself results from the hydrolysis of the unstable molecule 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic acid (thioquinolobactin). Pseudomonas fluorescens ATCC 17400 also displays a strong in vitro antagonism against the Oomycete Pythium, which is repressed by iron, suggesting the involvement of a siderophore(s). While a pyoverdine-negative mutant retains most of its antagonism, a thioquinolobactin-negative mutant only slowed-down Pythium growth, and a double pyoverdine-, thioquinolobactin-negative mutant, which does not produce any siderophore, totally lost its antagonism against Pythium. The siderophore thioquinolobactin could be purified and identified from spent medium and showed anti-Pythium activity, but it was quickly hydrolysed to quinolobactin, which we showed has no antimicrobial activity. Analysis of antagonism-affected transposon mutants revealed that genes involved in haem biosynthesis and sulfur assimilation are important for the production of thioquinolobactin and the expression of antagonism.
Resumo:
We previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV). Moreover, amantadine was shown to abrogate HCV p7 function in this assay at a concentration that specifically inhibits M2. Mutation of a conserved basic loop located between the two predicted trans-membrane alpha helices rendered HCV p7 non-functional as an ion channel. The intracellular localization of p7 was unaffected by this mutation and was found to overlap significantly with membranes associated with mitochondria. Demonstration of p7 ion channel activity in cellular membranes and its inhibition by amantadine affirm the protein as a target for future anti-viral chemotherapy.
Resumo:
Previous work has demonstrated that the alkyl esters of p-hydroxybenzoic acid (parabens) possess oestrogenic activity, which increases with length of alkyl chain from methylparaben to n-butylparaben and with branching in the alkyl chain from n-butylparaben to isobutylparaben. This study reports on the oestrogenic activity of benzylparaben in a variety of assays in vitro and in vivo. Benzylparaben was able to displace [H-3]oestradiol from cytosolic oestrogen receptor (ER) of MCF7 human breast cancer cells by 22% at 1000-fold molar excess, by 40% at 10000-fold molar excess, by 57% at 100000-fold molar excess and by 100% at 1000000-fold molar excess. It was able to increase expression of a stably transfected oestrogen responsive reporter gene (ERE-CAT) in MCF7 cells after 24 h at 10(-5)M/10(-4)M and after 7 days at 10(-6)M/10(-5)M/10(-4)M. Proliferation of MCF7 cells could be increased by 10(-6)M/10(-5)M benzylparaben and this could be inhibited by 10(-7)M pure anti-oestrogen ICI 182,780, indicating that growth effects were ER mediated. Further evidence for ER-mediation was provided from the ability of benzylparaben to increase the growth of a second oestrogen-dependent human breast cancer cell line ZR-75-1, but not the oestrogen-insensitive NIDA-MB-231 cell line. When tested in the presence of 10(-10)M 17beta-oestradiol, benzylparaben gave no antagonist response on the growth of either MCF7 or ZR-75-1 cells. Finally, benzylparaben could increase uterine weight in the immature mouse following topical application of three daily doses of 33 mg to dorsal skin. These results demonstrate that the oestrogenicity of methylparaben can be increased by the addition of an aryl group as well as by lengthening or branching the alkyl grouping. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Seventeen fungal isolates were tested in vitro as potential antagonists of two isolates of the root rot pathogen, Armillaria mellea. Some of the isolates were also added on mushroom composts with living mycelia to the roots of Armillaria-inoculated potted strawberry plants in the glasshouse to find out if they had the same degree of efficacy against the disease. Dactylium dendroides isolate SP was the most effective in reducing mycelial growth of A. mellea isolate 1 (Am1), followed by Trichoderma harzianum isolate Th2 and T. viride isolate Tv4. Th2, Th22, Tv3 and SP grew extensively over Am1 colonies, disintegrating the rhizomorphs. Isolate Tham1 of T hamatum was the most effective in reducing mycelial growth of A. mellea isolate 2 (Am2), followed by Tv3. Th12, Th22, Tv1, Tv3 and SP inhibited the initiation and growth of rhizomorphs of Am2. Regeneration tests showed that both Am1 and Am2 attacked by Trichoderma isolates and SP were no longer viable. Th23 and SP were almost as effective in vivo as in vitro. But isolate Co of Chaetomium olivaceum, which was ineffective in vitro, was found effective in vivo. Conversely, Th2, which exhibited good antagonistic activity in vitro, performed poorly in vivo. These results show that the in vitro and in vivo efficacies of potential antagonists may not necessarily be closely correlated. Hence, there is a danger that potentially effective isolates may be discarded if decisions are made only on the basis of preliminary screening tests carried out under laboratory conditions.
Resumo:
The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove.
Resumo:
Prebiotics are nondigestible carbohydrates that beneficially affect the host by selectively stimulating the growth and/or activity of one, or a limited number of, bacteria present in the colon. The selected genera should have the capacity to improve host health (e.g. Bifidobacterium, Lactobacillus). To help identify preferred types, for inclusion into the diet, a quantitative equation [measure of the prebiotic effect (MPE)] is suggested. This will help evaluate, in vitro, the fermentation of dietary carbohydrates and compare their prebiotic effect. Although the approach is not meant to define health values, it is formulated to better inform the choice of prebiotic. It therefore, compares measurements of bacterial changes through the determination of maximum growth rates of predominant groups present in faeces, rate of substrate assimilation and the production of lactic, acetic, propionic and butyric acids. The equation will allow further in vitro comparisons of MPE, leading towards further studies (e.g. in humans) to determine the success of dietary intervention. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.
Resumo:
Aims: To investigate the effect of various carbon sources on the production of extracellular antagonistic compounds against two Escherichia coli strains and Salmonella enterica serotype Typhimurium by three canine-derived lactobacilli strains. Methods and Materials: Cell-free preparations, pH neutralized, were used in antibiotic disc experiments as an initial screening. The bacteria/carbohydrate combinations that showed inhibition of the growth of those pathogens, were further investigated in batch co-culture experiments. The cell-free supernatants of the cultures, that decreased the population number of the pathogens in the co-culture experiments to log CFU ml(-1) less than or equal to 4, were tested for inhibition of the pathogens in pure cultures at neutral and acidic pH. Conclusions: The results showed that the substrate seems to affect the production of antimicrobial compounds and this effect could not just be ascribed to the ability of the bacteria to grow in the various carbon sources. L. mucosae, L. acidophilus and L. reuteri, when grown in sugar mixtures consisting of alpha-glucosides (Degree of Polymerization (DP) 1-4) could produce antimicrobial compounds active against all three pathogens in vitro. This effect could not be attributed to a single ingredient of those sugar mixtures and was synergistic. This inhibition had a dose-response characteristic and was more active at acidic pH. Significance and Impact of the Study: Knowledge of the effect that the carbon source has on the production of antimicrobial compounds by gut-associated lactobacilli allows the rational design of prebiotic/probiotic combinations to combat gastrointestinal pathogens.
Resumo:
Exopolysaccharides (EPS) isolated from two Bifidobacterium strains, one of human intestinal origin (Bifidobacterium longum subsp. longum IPLA E44) and the other from dairy origin (Bifidobacterium animalis subsp. lactis IPLA R1), were subjected to in vitro chemically simulated gastrointestinal digestion. which showed the absence of degradation of both polymers in these conditions. Polymers were then used as carbon sources in pH-controlled faecal batch cultures and compared with the non-prebiotic carbohydrate glucose and the prebiotic inulin to determine changes in the composition of faecal bacteria. A set of eight fluorescent in situ hybridisation oligonucleotide probes targeting 16S rRNA sequences was used to quantify specific groups of microorganisms. Growth of the opportunistic pathogen Clostridium histolyticum occurred with all carbohydrates tested similarly to that found in negative control cultures without added carbohydrate and was mainly attributed to the culture conditions used rather than enhancement of growth by these substrates. Polymers E44 and RI stimulated growth of Lactobacillus/Enterococcus, Bifidobacterium, and Bacteroides/Prevotella in a similar way to that seen with inulin. The EPS RI also promoted growth of the Atopobium cluster during the first 24 h of fermentation. An increase in acetic and lactic acids was found during early stages of fermentation (first 10-24 h) correlating with increases of Lactobacillus, Bifidobacterium, and Atopobium. Propionic acid concentrations increased in old cultures, which was coincident with the enrichment of Clostridium cluster IX in cultures with EPS RI and with the increases in Bacteroides in cultures with both microbial EPS (RI and E44) and inulin. The lowest acetic to propionic acid ratio was obtained for EPS E44. None of the carbohydrates tested supported the growth of microorganisms from Clostridium clusters XIVa+b and IV, results that correlate with the poor butyrate production in the presence of EPS. Thus, EPS synthesized by bifidobacteria from dairy and intestinal origins can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of short chain fatty acids. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the use of a bile-salt-hydrolyzing Lactobacillus fermentum strain as a probiotic with potential hypocholesterolemic properties. The effect of L. fermentum on representative microbial populations and overall metabolic activity of the human intestinal microbiota was investigated using a three-stage continuous culture system. Also, the use of galactooligosaccharides as a prebiotic to enhance growth and/or activity of the Lactobacillus strain was evaluated. Administration of L. fermentum resulted in a decrease in the overall bifidobacterial population (ca. 1 log unit). In the in vitro system, no significant changes were observed in the total bacterial, Lactobacillus, Bacteroides, and clostridial populations through L. fermentum supplementation. Acetate production decreased by 9 to 27%, while the propionate and butyrate concentrations increased considerably (50 to 90% and 52 to 157%, respectively). A general, although lesser, increase in the production of lactate was observed with the administration of the L. fermentum strain. Supplementation of the prebiotic to the culture medium did not cause statistically significant changes in either the numbers or the activity of the microbiota, although an increase in the butyrate production was seen (29 to 39%). Results from this in vitro study suggest that L.Fermentum KC5b is a candidate probiotic which may affect cholesterol metabolism. The short-chain fatty acid concentrations, specifically the molar proportion of propionate and/or bile salt deconjugation, are probably the major mechanism involved in the purported cholesterol-lowering properties of this strain.