969 resultados para VIRAL REPLICATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of metacontingency was taught to undergraduate students of Psychology by using a "game" simulation proposed originally by Vichi, Andery and Glenn (2009). Twenty-five students, distributed into three groups were exposed to six experimental sessions in which they had to make bets and divide the amounts gained. The three groups competed against each other for photocopies quotas. Two contingencies shifted over the sessions. Under Contingency B, the group would win points only if in the previous round each member had received the same amount of points and under Contingency A, winning was contingent on an unequal distribution of the points. We observed that proportional divisions predominated independent of the contingency in course. The manipulation of cultural consequences (winning or losing points) produced consistent modifications in two response categories: 1) choices of the value bet in each round, and 2) divisions of the points among group members. Controlling relations between cultural consequences and the behavior of dividing were statistically significant in one of the groups, whereas in the other two groups controlling relations were observed only in Contingency B. A review of the reinforcement criteria used in the original experiment is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) is the leading cause of liver disease worldwide. In this study, we analyzed four treatment-naive patients infected with subtype 1a and performed Roche/454 pyrosequencing across the coding region. We report the presence of low-level drug resistance mutations that would most likely have been missed using conventional sequencing methods. The approach described here is broadly applicable to studies of viral diversity and could help to improve the efficacy of direct-acting antiviral agents (DAA) in the treatment of HCV-infected patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart. Oncogene (2012) 31, 4245-4254; doi:10.1038/onc.2011.586; published online 9 January 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Lower respiratory tract infection (LRTI) is a major cause of pediatric morbidity and mortality, especially among non-affluent communities. In this study we determine the impact of respiratory viruses and how viral co-detections/infections can affect clinical LRTI severity in children in a hospital setting. Methods Patients younger than 3 years of age admitted to a tertiary hospital in Brazil during the months of high prevalence of respiratory viruses had samples collected from nasopharyngeal aspiration. These samples were tested for 13 different respiratory viruses through real-time PCR (rt-PCR). Patients were followed during hospitalization, and clinical data and population characteristics were collected during that period and at discharge to evaluate severity markers, especially length of hospital stay and oxygen use. Univariate regression analyses identified potential risk factors and multivariate logistic regressions were used to determine the impact of specific viral detections as well as viral co-detections in relation to clinical outcomes. Results We analyzed 260 episodes of LRTI with a viral detection rate of 85% (n = 222). Co-detection was observed in 65% of all virus-positive episodes. The most prevalent virus was Respiratory Syncytial Virus (RSV) (54%), followed by Human Metapneumovirus (hMPV) (32%) and Human Rhinovirus (HRV) (21%). In the multivariate models, infants with co-detection of HRV + RSV stayed 4.5 extra days (p = 0.004), when compared to infants without the co-detection. The same trends were observed for the outcome of days of supplemental oxygen use. Conclusions Although RSV remains as the main cause of LRTI in infants our study indicates an increase in the length of hospital stay and oxygen use in infants with HRV detected by RT-PCR compared to those without HRV. Moreover, one can speculate that when HRV is detected simultaneously with RSV there is an additive effect that may be reflected in more severe clinical outcome. Also, our study identified a significant number of children infected by recently identified viruses, such as hMPV and Human Bocavirus (HBov), and this is a novel finding for poor communities from developing countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of Human Respiratory Syncytial Virus (HRSV) protein interactions with host cell components is crucial to devise antiviral strategies. Viral nucleoprotein, phosphoprotein and matrix protein genes were optimized for human codon usage and cloned into expression vectors. HEK-293T cells were transfected with these vectors, viral proteins were immunoprecipitated, and co-immunoprecipitated cellular proteins were identified through mass spectrometry. Cell proteins identified with higher confidence scores were probed in the immunoprecipitation using specific antibodies. The results indicate that nucleoprotein interacts with arginine methyl-transferase, methylosome protein and Hsp70. Phosphoprotein interacts with Hsp70 and tropomysin, and matrix with tropomysin and nucleophosmin. Additionally, we performed immunoprecipitation of these cellular proteins in cells infected with HRSV, followed by detection of co-immunoprecipitated viral proteins. The results indicate that these interactions also occur in the context of viral infection, and their potential contribution for a HRSV replication model is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Financial support: CNPq and Pasteur Institute of São Paulo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct killing of target cells by cytotoxic T lymphocytes (CTLs) plays a fundamental role in protective immunity to viral, bacterial, protozoan and fungi infections, as well as to tumor cells. In vivo cytotoxic assays take into account the interaction of target and effector cells in the context of the proper microenvironment making the analysis biologically more relevant than in vitro cytotoxic assays. Thus, the development, improvement and validation of in vivo methods are necessary in view of the importance of the results they may provide. We describe and discuss in this manuscript a method to evaluate in vivo specific cytotoxic T lymphocyte killing. We used as model system mice immunized with human recombinant replication-deficient adenovirus 5 (HAd5) containing different transgenes as the trigger of a CTL-mediated immune response. To these mice, we adoptively transferred syngeneic cells labeled with different vital fluorescent dyes. Donor cells were pulsed (target) or not (control non-target) with distinct CD8 T-cell epitopes, mixed in a 1:1 ratio and injected i.v. into immunized or non-immunized recipient mice. After 18-24h, spleen cells are collected and analysed by flow cytometry. A deviation from the 1:1 ratio of control and target cell populations indicates antigen specific lysis of target cells

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dengue virus (DENV) non-structural 1 (NS1) protein plays a critical role in viral RNA replication and has a central position in DENV pathogenesis. DENV NS1 is a glycoprotein expressed in infected mammalian cells as soluble monomers that dimerize in the lumen of the endoplasmic reticulum; NS1 is subsequently transported to the cell surface, where it remains membrane associated or is secreted into the extracellular milieu as a hexameric complex. During the last three decades, the DENV NS1 protein has also been intensively investigated as a potential target for vaccines and antiviral drugs. In addition, NS1 is the major diagnostic marker for dengue infection. This review highlights some important issues regarding the role of NS1 in DENV pathogenesis and its biotechnological applications, both as a target for the development of safe and effective vaccines and antiviral drugs and as a tool for the generation of accurate diagnostic methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects encounter many microorganisms in nature and to survive they have developed counter measures against the invading pathogens. In Drosophila melanogaster research on insect immunity has mainly been focused on infections by bacteria and fungi. We have explored the immune response against natural infections of the parasite Octosporea muscaedomesticae and the Drosophila C virus as compared to natural infections of bacteria and fungi. By using Affymetrix Drosophila GeneChips, we were able to obtain 48 genes uniquely induced after parasitic infection. It was also clearly shown that natural infections led to different results than when injecting the pathogens. In order to search for the ultimate role of the lepidopteran protein hemolin, we used RNA interference (RNAi). We could show that injection of double stranded RNA (dsRNA) of Hemolin in pupae of Hyalophora cecropia led to embryonic malformation and lethality and that there was a sex specific difference. We continued the RNAi investigation of hemolin in another lepidopteran species, Antheraea pernyi, and discovered that hemolin was induced by dsRNA per se. A similar induction of hemolin was seen after infection with baculovirus and we therefore performed in vivo experiments on baculovirus infected pupae. We could show that a low dose of dsHemolin prolonged the period before the A. pernyi pupae showed any symptoms of infection, while a high dose led to a more rapid onset of symptoms. By performing in silico analysis of the hemolin sequence from A. pernyi in comparison with other Hemolin sequences, it was possible to select a number of sites that either by being strongly conserved or variable could be important targets for future studies of hemolin function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.