979 resultados para Use phase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional high speed machinery actuators are powered and coordinated by mechanical linkages driven from a central drive, but these linkages may be replaced by independently synchronised electric drives. Problems associated with utilising such electric drives for this form of machinery were investigated. The research concentrated on a high speed rod-making machine, which required control of high inertias (0.01-0.5kgm2), at continuous high speed (2500 r/min), with low relative phase errors between two drives (0.0025 radians). Traditional minimum energy drive selection techniques for incremental motions were not applicable to continuous applications which require negligible energy dissipation. New selection techniques were developed. A brushless configuration constant enabled the comparison between seven different servo systems; the rate earth brushless drives had the best power rates which is a performance measure. Simulation was used to review control strategies, such that a microprocessor controller with a proportional velocity loop within a proportional position loop with velocity feedforward was designed. Local control schemes were investigated as means of reducing relative errors between drives: the slave of a master/slave scheme compensates for the master's errors: the matched scheme has drives with similar absolute errors so the relative error is minimised, and the feedforward scheme minimises error by adding compensation from previous knowledge. Simulation gave an approximate velocity loop bandwidth and position loop gain required to meet the specification. Theoretical limits for these parameters were defined in terms of digital sampling delays, quantisation, and system phase shifts. Performance degradation due to mechanical backlash was evaluated. Thus any drive could be checked to ensure that the performance specification could be realised. A two drive demonstrator was commissioned with 0.01kgm2 loads. By use of simulation the performance of one drive was improved by increasing the velocity loop bandwidth fourfold. With the master/slave scheme relative errors were within 0.0024 radians at a constant 2500 r/min for two 0.01 kgm^2 loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of the increasing significance of broadband, many small and medium enterprises (SMEs) are unaware of or unappreciative of its benefits. This is potentially a problem for governments, Internet Service Providers and other supply side institutions. The current study empirically verifies applicability of an extended IS continuance model controlling for organizational variables based on the Technology-Organization-Environment framework to examine factors influencing broadband post-adoption behavior of SMEs in Singapore. Strong support for the model has been manifested by the results, providing insight into influential factors. Results of the study suggest that perceived usefulness is a strong predictor of users’ continuance intention, followed by satisfaction with broadband usage as a significant but weaker predictor. SMEs in a more competitive business environment and whose key executive possesses greater IT knowledge are more likely to use broadband.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations into the modelling techniques that depict the transport of discrete phases (gas bubbles or solid particles) and model biochemical reactions in a bubble column reactor are discussed here. The mixture model was used to calculate gas-liquid, solid-liquid and gasliquid-solid interactions. Multiphase flow is a difficult phenomenon to capture, particularly in bubble columns where the major driving force is caused by the injection of gas bubbles. The gas bubbles cause a large density difference to occur that results in transient multi-dimensional fluid motion. Standard design procedures do not account for the transient motion, due to the simplifying assumptions of steady plug flow. Computational fluid dynamics (CFD) can assist in expanding the understanding of complex flows in bubble columns by characterising the flow phenomena for many geometrical configurations. Therefore, CFD has a role in the education of chemical and biochemical engineers, providing the examples of flow phenomena that many engineers may not experience, even through experimentation. The performance of the mixture model was investigated for three domains (plane, rectangular and cylindrical) and three flow models (laminar, k-e turbulence and the Reynolds stresses). mThis investigation raised many questions about how gas-liquid interactions are captured numerically. To answer some of these questions the analogy between thermal convection in a cavity and gas-liquid flow in bubble columns was invoked. This involved modelling the buoyant motion of air in a narrow cavity for a number of turbulence schemes. The difference in density was caused by a temperature gradient that acted across the width of the cavity. Multiple vortices were obtained when the Reynolds stresses were utilised with the addition of a basic flow profile after each time step. To implement the three-phase models an alternative mixture model was developed and compared against a commercially available mixture model for three turbulence schemes. The scheme where just the Reynolds stresses model was employed, predicted the transient motion of the fluids quite well for both mixture models. Solid-liquid and then alternative formulations of gas-liquid-solid model were compared against one another. The alternative form of the mixture model was found to perform particularly well for both gas and solid phase transport when calculating two and three-phase flow. The improvement in the solutions obtained was a result of the inclusion of the Reynolds stresses model and differences in the mixture models employed. The differences between the alternative mixture models were found in the volume fraction equation (flux and deviatoric stress tensor terms) and the viscosity formulation for the mixture phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores translating well-written sequential programs in a subset of the Eiffel programming language - without syntactic or semantic extensions - into parallelised programs for execution on a distributed architecture. The main focus is on constructing two object-oriented models: a theoretical self-contained model of concurrency which enables a simplified second model for implementing the compiling process. There is a further presentation of principles that, if followed, maximise the potential levels of parallelism. Model of Concurrency. The concurrency model is designed to be a straightforward target for mapping sequential programs onto, thus making them parallel. It aids the compilation process by providing a high level of abstraction, including a useful model of parallel behaviour which enables easy incorporation of message interchange, locking, and synchronization of objects. Further, the model is sufficient such that a compiler can and has been practically built. Model of Compilation. The compilation-model's structure is based upon an object-oriented view of grammar descriptions and capitalises on both a recursive-descent style of processing and abstract syntax trees to perform the parsing. A composite-object view with an attribute grammar style of processing is used to extract sufficient semantic information for the parallelisation (i.e. code-generation) phase. Programming Principles. The set of principles presented are based upon information hiding, sharing and containment of objects and the dividing up of methods on the basis of a command/query division. When followed, the level of potential parallelism within the presented concurrency model is maximised. Further, these principles naturally arise from good programming practice. Summary. In summary this thesis shows that it is possible to compile well-written programs, written in a subset of Eiffel, into parallel programs without any syntactic additions or semantic alterations to Eiffel: i.e. no parallel primitives are added, and the parallel program is modelled to execute with equivalent semantics to the sequential version. If the programming principles are followed, a parallelised program achieves the maximum level of potential parallelisation within the concurrency model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Scintillation Proximity Assay (SPA) is a method that is frequently used to detect and quantify the strength of intermolecular interactions between a biological receptor and ligand molecule in aqueous media. This thesis describes the synthesis of scintillant-tagged-compounds for application in a novel cell-based SPA. A series of 4-functianlised-2,5-diphenyloxazole molecules were synthesised. These 4-functionalised-2,5-diphenyloxazoles were evaluated by Sense Proteomic Ltd. Accordingly, the molecules were evaluated for the ability to scintillate in the presence of ionising radiation. In addition, the molecules were incorporated into liposomal preparations which were subsequently evaluated for the ability to scintillate in the presence of ionising radiation. The optimal liposomal preparation was introduced into the membrane of HeLa cells that were used successfully in a cell-based SPA to detect and quantify the uptake of [14C]methionine. This thesis also describes the synthesis and subsequent polymerisation of novel poly(oxyethylene glycol)-based monomers to form a series of new polymer supports. These Poly(oxyethylene glycol)-polymer (POP) supports were evaluated for the ability to swell and mass-uptake in a variety of solvents, demonstrating that POP-supports exhibit enhanced solvent compatibilities over several commercial resins. The utility of POP-supports in solid-phase synthesis was also demonstrated successfully. The incorporation of (4’-vinyl)-4-benzyl-2,5-diphenyloxazole in varying mole percentage into the monomer composition resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents and scintillate efficiently in the presence of ionising radiation. The utility of POP-Sc supports in solid-phase synthesis and subsequent in-situ SPA to detect and quantify, in real-time, the kinetic progress of a solid-phase reaction was exemplified successfully.In addition, POP-Sc supports were used successfully both in solid-phase combinatorial synthesis of a peptide nucleic acid (PNA)-library and subsequent screening of this library for the ability to hybridise with DNA, which was labelled with a suitable radio-isotape. This data was used to identify the dependence of the number and position of complimentary codon pairs upon the extent of hybridisation. Finally, a further SPA was used to demonstrate the excellent compatibility of POP-Sc supports for use in the detection and quantification of enzyme assays conducted within the matrix of the POP-Sc support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palliative care involves a multi-professional team approach to the provision of active, holistic care for patients and their families when the patient's disease is no longer responsive to curative treatment. Patient care encompasses medical and pharmacological intervention for symptom control, together with psychological, spiritual and social support for patients and families. Care is provided by teams in hospice, hospital or community environments. Although traditionally associated with providing care for cancer patients, palliative care services are increasingly providing for patients with non-malignant disease. Symptoms commonly associated with terminal phase of disease include pain, nausea, agitation, respiratory symptoms and general fatigue. During the last few days of life, patients may become weak, resulting in difficulty taking oral medication and have periods of unconsciousness. Some patients may require drug administration via subcutaneous infusion. A proportion of patients may develop difficulty clearing respiratory secretions causing a characteristic ‘death rattle’, which although not generally considered to be distressing for the patient, is often treated with a variety of anticholinergic drugs in an attempt to reduce the ‘noisy breathing’ for the benefit of relatives and others who may be closely associated with the patient.This study examined treatment of death rattle in two Hospices focusing on objective and subjective outcome measures in order to determine the efficacy of anticholinergic regimens in current use. Qualitative methods were employed to elicit attitudes of professionals and carers working closely with the patient. The number of patients recruited and monitored were small, many confounding factors were identified which questioned firstly the clinical rationale for administering anticholinergic drugs routinely to treat death rattle and secondly, the ethics of administering drug regimens to patients to treat death rattle with the primary aim of relieving distress for others. Ethnical issues, including those of consent are discussed in relation to their impact on the methodology of end of life studies in medicines management in palliative care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of the harmonic neutralised shunt Converter Compensator as a practical means of reactive power compensation in power transmission systems has cleared ground for wider application of this type of equipment. An experimental 24-pulse voltage sourced convector has been successfully applied in controlling the terminal power factor of a 1.5kW, 240V three phase cage rotor induction motor, whose winding has been used in place of the usual phase shifting transformers. To achieve this, modifications have been made to the conventional stator winding of the induction machine. These include an unconventional phase spread and facilitation of compensator connections to selected tapping points between stator coils to give a three phase winding with a twelve phase connection to the twenty four pulse converter. Theoretical and experimental assessments of the impact of these modifications and attachment of the compensator have shown that there is a slight reduction in the torque developed at a given slip and in the combined system efficiency. There is also an increase in the noise level, also a consequence of the harmonics. The stator leakage inductance gave inadequate coupling reactance between the converter and the effective voltage source, necessitating the use of external inductors in each of the twelve phases. The terminal power factor is fully controllable when the induction machine is used either as a motor or as a generator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous sea-surface variability studies, researchers have failed to utilise the full ERS-1 mission due to the varying orbital characteristics in each mission phase, and most have simply ignored the Ice and Geodetic phases. This project aims to introduce a technique which will allow the straightforward use of all orbital phases, regardless of orbit type. This technique is based upon single satellite crossovers. Unfortunately the ERS-1 orbital height is still poorly resolved (due to higher air drag and stronger gravitational effects) when compared with that of TOPEX/Poseidon (T/P), so to make best use of the ERS-1 crossover data corrections to the ERS-1 orbital heights are calculated by fitting a cubic-spline to dual-crossover residuals with T/P. This correction is validated by comparison of dual satellite crossovers with tide gauge data. The crossover processing technique is validated by comparing the extracted sea-surface variability information with that from T/P repeat pass data. The two data sets are then combined into a single consistent data set for analysis of sea-surface variability patterns. These patterns are simplified by the use of an empirical orthogonal function decomposition which breaks the signals into spatial modes which are then discussed separately. Further studies carried out on these data include an analysis of the characteristics of the annual signal, discussion of evidence for Rossby wave propagation on a global basis, and finally analysis of the evidence for global mean sea level rise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To create hydrologically sustainable wetlands, knowledge of the water use requirements of target habitats must be known. Extensive literature reviews highlighted a dearth of water-use data associated with large reedbeds and wet woodland habitats and in response to this field experiments were established. Field experiments to measure the water use rates of large reedbeds [ET(Reed)] were completed at three sites within the UK. Reference Crop Evapotranspiration [ETo] was calculated and mean monthly crop coefficients [Kc(Reed)] were developed. Kc(Reed) was less than 1 during the growing season (March to September), ranging between 0.22 in March and reaching a peak of 0.98 in June. The developed coefficients compare favourably with published data from other large reedbed systems and support the premise that the water use of large reedbeds is lower than that from small/fringe reedbeds. A methodology for determining water use rates from wet woodland habitats (UK NVC Code: W6) is presented, in addition to provisional ET(W6) rates for two sites in the UK. Reference Crop Evapotranspiration [ETo] data was used to develop Kc(W6) values which ranged between 0.89 (LV Lysimeter 1) and 1.64 (CH Lysimeter 2) for the period March to September. The data are comparable with relevant published data and show that the water use rates of wet woodland are higher than most other wetland habitats. Initial observations suggest that water use is related to the habitat’s establishment phase and the age and size of the canopy tree species. A theoretical case study presents crop coefficients associated with wetland habitats and provides an example water budget for the creation of a wetland comprising a mosaic of wetland habitats. The case study shows the critical role that the water use of wetland habitats plays within a water budget.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures. © 2011 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the characteristics of intermediate pyrolysis oils derived from sewage sludge and de-inking sludge (a paper industry residue), with a view to their use as fuels in a diesel engine. The feedstocks were dried and pelletised, then pyrolysed in the Pyroformer intermediate pyrolysis system. The organic fraction of the oils was separated from the aqueous phase and characterised. This included elemental and compositional analysis, heating value, cetane index, density, viscosity, surface tension, flash point, total acid number, lubricity, copper corrosion, water, carbon residue and ash content. Most of these results are compared with commercial diesel and biodiesel. Both pyrolysis oils have high carbon and hydrogen contents and their higher heating values compare well with biodiesel. The water content of the pyrolysis oils is reasonable and the flash point is found to be high. Both pyrolysis oils have good lubricity, but show some corrosiveness. Cetane index is reduced, which may influence ignition. Also viscosity is increased, which may influence atomisation quality. Carbon residue and ash content are both high, indicating potential deposition problems. Compared with de-inking sludge pyrolysis oil (DSPO), sewage sludge pyrolysis oil (SSPO) has a higher heating value, but higher corrosiveness and viscosity. The conclusions are that both intermediate pyrolysis oils will be able to provide sufficient heat when used in diesel engine; however poor combustion and carbon deposition may be encountered. Blending of these pyrolysis oils with diesel or biodiesel could overcome these problems and is recommended for further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a phase locking scheme that enables the demonstration of a practical dual pump degenerate phase sensitive amplifier for 10 Gbit/s non-return to zero amplitude shift keying signals. The scheme makes use of cascaded Mach Zehnder modulators for creating the pump frequencies as well as of injection locking for extracting the signal carrier and synchronizing the local lasers. An in depth optimization study has been performed, based on measured error rate performance, and the main degradation factors have been identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.