971 resultados para Unresolved vision problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multispectral photometric stereo method for capturing geometry of deforming surfaces. A novel photometric calibration technique allows calibration of scenes containing multiple piecewise constant chromaticities. This method estimates per-pixel photometric properties, then uses a RANSAC-based approach to estimate the dominant chromaticities in the scene. A likelihood term is developed linking surface normal, image intensity and photometric properties, which allows estimating the number of chromaticities present in a scene to be framed as a model estimation problem. The Bayesian Information Criterion is applied to automatically estimate the number of chromaticities present during calibration. A two-camera stereo system provides low resolution geometry, allowing the likelihood term to be used in segmenting new images into regions of constant chromaticity. This segmentation is carried out in a Markov Random Field framework and allows the correct photometric properties to be used at each pixel to estimate a dense normal map. Results are shown on several challenging real-world sequences, demonstrating state-of-the-art results using only two cameras and three light sources. Quantitative evaluation is provided against synthetic ground truth data. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision tracking has significant potential for tracking resources on large scale, congested construction sites, where a small number of cameras strategically placed around the site could replace hundreds of tracking tags. The correlation of vision tracking 2D positions from multiple views can provide the 3D position. However, there are many 2D vision trackers available in the literature, and little information is available on which one is most effective for construction applications. In this paper, a comparative study of various vision tracker categories is carried out, to identify which one is most effective in tracking construction resources. Testing parameters for evaluating categories of trackers are identified, and benefits and limitations of each category are presented. The most promising trackers are tested using a database of construction operations videos. The results indicate the effectiveness of each tracker in relation to each parameter of the test, and the most suitable tracker needed to research effective 3D vision trackers of construction resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tracking of project related entities such as construction equipment, materials, and personnel is used to calculate productivity, detect travel path conflicts, enhance the safety on the site, and monitor the project. Radio frequency tracking technologies (Wi-Fi, RFID, UWB) and GPS are commonly used for this purpose. However, on large-scale sites, deploying, maintaining and removing such systems can be costly and time-consuming. In addition, privacy issues with personnel tracking often limits the usability of these technologies on construction sites. This paper presents a vision based tracking framework that holds promise to address these limitations. The framework uses videos from a set of two or more static cameras placed on construction sites. In each camera view, the framework identifies and tracks construction entities providing 2D image coordinates across frames. Combining the 2D coordinates based on the installed camera system (the distance between the cameras and the view angles of them), 3D coordinates are calculated at each frame. The results of each step are presented to illustrate the feasibility of the framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only very few constructed facilities today have a complete record of as-built information. Despite the growing use of Building Information Modelling and the improvement in as-built records, several more years will be required before guidelines that require as-built data modelling will be implemented for the majority of constructed facilities, and this will still not address the stock of existing buildings. A technical solution for scanning buildings and compiling Building Information Models is needed. However, this is a multidisciplinary problem, requiring expertise in scanning, computer vision and videogrammetry, machine learning, and parametric object modelling. This paper outlines the technical approach proposed by a consortium of researchers that has gathered to tackle the ambitious goal of automating as-built modelling as far as possible. The top level framework of the proposed solution is presented, and each process, input and output is explained, along with the steps needed to validate them. Preliminary experiments on the earlier stages (i.e. processes) of the framework proposed are conducted and results are shown; the work toward implementation of the remainder is ongoing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manually inspecting concrete surface defects (e.g., cracks and air pockets) is not always reliable. Also, it is labor-intensive. In order to overcome these limitations, automated inspection using image processing techniques was proposed. However, the current work can only detect defects in an image without the ability of evaluating them. This paper presents a novel approach for automatically assessing the impact of two common surface defects (i.e., air pockets and discoloration). These two defects are first located using the developed detection methods. Their attributes, such as the number of air pockets and the area of discoloration regions, are then retrieved to calculate defects’ visual impact ratios (VIRs). The appropriate threshold values for these VIRs are selected through a manual rating survey. This way, for a given concrete surface image, its quality in terms of air pockets and discoloration can be automatically measured by judging whether their VIRs are below the threshold values or not. The method presented in this paper was implemented in C++ and a database of concrete surface images was tested to validate its performance. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CO.1943-7862.0000126?journalCode=jcemd4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among several others, the on-site inspection process is mainly concerned with finding the right design and specifications information needed to inspect each newly constructed segment or element. While inspecting steel erection, for example, inspectors need to locate the right drawings for each member and the corresponding specifications sections that describe the allowable deviations in placement among others. These information seeking tasks are highly monotonous, time consuming and often erroneous, due to the high similarity of drawings and constructed elements and the abundance of information involved which can confuse the inspector. To address this problem, this paper presents the first steps of research that is investigating the requirements of an automated computer vision-based approach to automatically identify “as-built” information and use it to retrieve “as-designed” project information for field construction, inspection, and maintenance tasks. Under this approach, a visual pattern recognition model was developed that aims to allow automatic identification of construction entities and materials visible in the camera’s field of view at a given time and location, and automatic retrieval of relevant design and specifications information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On-site tracking in open construction sites is often difficult because of the large amounts of items that are present and need to be tracked. Additionally, the amounts of occlusions/obstructions present create a highly complex tracking environment. Existing tracking methods are based mainly on Radio Frequency technologies, including Global Positioning Systems (GPS), Radio Frequency Identification (RFID), Bluetooth and Wireless Fidelity (Wi-Fi, Ultra-Wideband, etc). These methods require considerable amounts of pre-processing time since they need to manually deploy tags and keep record of the items they are placed on. In construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. This paper presents a novel method for open site tracking with construction cameras based on machine vision. According to this method, video feed is collected from on site video cameras, and the user selects the entity he wishes to track. The entity is tracked in each video using 2D vision tracking. Epipolar geometry is then used to calculate the depth of the marked area to provide the 3D location of the entity. This method addresses the limitations of radio frequency methods by being unobtrusive and using inexpensive, and easy to deploy equipment. The method has been implemented in a C++ prototype and preliminary results indicate its effectiveness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tracking applications provide real time on-site information that can be used to detect travel path conflicts, calculate crew productivity and eliminate unnecessary processes at the site. This paper presents the validation of a novel vision based tracking methodology at the Egnatia Odos Motorway in Thessaloniki, Greece. Egnatia Odos is a motorway that connects Turkey with Italy through Greece. Its multiple open construction sites serves as an ideal multi-site test bed for validating construction site tracking methods. The vision based tracking methodology uses video cameras and computer algorithms to calculate the 3D position of project related entities (e.g. personnel, materials and equipment) in construction sites. The approach provides an unobtrusive, inexpensive way of effectively identifying and tracking the 3D location of entities. The process followed in this study starts by acquiring video data from multiple synchronous cameras at several large scale project sites of Egnatia Odos, such as tunnels, interchanges and bridges under construction. Subsequent steps include the evaluation of the collected data and finally, performing the 3D tracking operations on selected entities (heavy equipment and personnel). The accuracy and precision of the method's results is evaluated by comparing it with the actual 3D position of the object, thus assessing the 3D tracking method's effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tracking methods have the potential to retrieve the spatial location of project related entities such as personnel and equipment at construction sites, which can facilitate several construction management tasks. Existing tracking methods are mainly based on Radio Frequency (RF) technologies and thus require manual deployment of tags. On construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. To address these limitations, this paper proposes an alternate 3D tracking method based on vision. It operates by tracking the designated object in 2D video frames and correlating the tracking results from multiple pre-calibrated views using epipolar geometry. The methodology presented in this paper has been implemented and tested on videos taken in controlled experimental conditions. Results are compared with the actual 3D positions to validate its performance.