997 resultados para Ultrafine Particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

COS-7 cells transfected with human immunodeficiency virus type 1 (HIV-1) proviral DNA produce virus in which three tRNA species are most abundant in the viral tRNA population. These tRNAs have been identified through RNA sequencing techniques as tRNA(3Lys) the primer tRNA in HIV-1, and members of the tRNA(1,2Lys) isoacceptor family. These RNAs represent 60% of the low-molecular-weight RNA isolated from virus particles, while they represent only 6% of the low-molecular-weight RNA isolated from the COS cell cytoplasm. Thus, tRNA(Lys) is selectively incorporated into HIV-1 particles. We have measured the ratio of tRNA(3Lys) molecules to copies of genomic RNA in viral RNA samples and have calculated that HIV-1 contains approximately eight molecules of tRNA(3Lys) per two copies of genomic RNA. We have also obtained evidence that the Pr160gag-pol precursor is involved in primer tRNA(3Lys) incorporation into virus. First, selective tRNA(Lys) incorporation and wild-type amounts of tRNA(3Lys) were maintained in a protease-negative virus unable to process Pr55gag and Pr160gag-pol precursors, indicating that precursor processing was not required for primer tRNA incorporation. Second, viral particles containing only unprocessed Pr55gag protein did not selectively incorporate tRNA(Lys), while virions containing both unprocessed Pr55gag and Pr160gag-pol proteins demonstrated select tRNA(3Lys) packaging. Third, studies with a proviral mutant containing a deletion of most of the reverse transcriptase sequences and approximately one-third of the integrase sequence in the Pr160gag-pol precursor resulted in the loss of selective tRNA incorporation and an eightfold decrease in the amount of tRNA(3Lys) per two copies of genomic RNA. We have also confirmed herein finding of a previous study which indicated that the primer binding site is not required for the selective incorporation of tRNA(Lys).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of the new Kinetex-C18 column was investigated. Packed with a new brand of porous shell particles, this column has an outstanding efficiency. Once corrected for the contribution of the instrument extra column volume, the minimum values of the reduced plate heights for a number of low molecular weight compounds (e.g., anthracene and naphtho[2,3-a]pyrene) were between 1.0 and 1.3, breaking the legendary record set 3 years ago by Halo-C18 packed columns. The liquid-solid mass transfer of proteins (e.g., insulin and lyzozyme) is exceptionally fast on Kinetex-C18 much faster than on the Halo-C18 column. The different contributions of dispersion and mass transfer resistances to the column efficiency were determined and discussed. The possible reasons for this extremely high column efficiency are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine polystyrene (PS) nanofibers were prepared via the simple electrospinning technique. Uniform and smooth PS nanofibers were obtained with adding the organic salt BTEAC into the PS solutions and adjusting the concentration of PS solutions. Without the addition of BTEAC, PS fibers with few beads could be achieved with a PS mass fraction of 20%, and the average diameter of the fibers was 280 nm. The addition of the organic salt BTEAC could lower the critical concentration for the fiber formation and reduce the amount of beads on the fibers. Unltrafine PS fibers without any beads were obtained with a PS mass fraction of 10% and an ionic salt mass fraction of 0.5%. The average diameter of the fiber was successfully reduced to 100 nm. The influence of the salt concentration on the morphology and diameter of the PS fibers was also investigated. The viscosity and surface tension changes were measured with changing the concentration of BTEAC. The results show that the changes were so small that these factors could be ignored. It was suggested that variations of the fiber diameter should be mainly resulted from the changes of conductivity and conformation of the polymer chain as the concentration of BTEAC is varied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel sinusoidal shape nano-particle employed in localized surface plasmon resonance (LSPR) devices. Numerical modeling demonstrates advantages offered by the proposed nano-sinusoid on LSPR enhancement against other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the gas–solid system plays a significant role in many industrial processes. It is a complex physical and chemical process, generally consisting of heat transfer, mass transfer, species diffusion, and chemical reactions. In this paper, the reaction of methane with air at a low air factor and the gas flow in a fluidized bed with 0.1 mm solid particles are computationally simulated to enable the study of the effect of the inert particles on the species diffusion and the chemical reactions. The reaction of methane and air is modeled by a two-step reaction mechanism that produces a continuous fluid phase composed of six gases (CH4, CO, O2, CO2, H2O, and N2) and discrete solid particles in the reactor. The simulation results are compared with experiment and show that the finite rate model and the eddy dissipation model can well describe the reactions of gases in high-density gas–solid systems. The distribution of each gas and the particle behaviors are analyzed for incomplete combustion at different concentrations of loaded solid particles. The inert particles change the reactions by enhancing both the chemical kinetics and the species diffusion dynamics.