950 resultados para Transvestite bodies


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoimmune diseases are a major health problem. Usually autoimmune disorders are multifactorial and their pathogenesis involves a combination of predisposing variations in the genome and other factors such as environmental triggers. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare, recessively inherited, autoimmune disease caused by mutations in a single gene. Patients with APECED suffer from several organ-specific autoimmune disorders, often affecting the endocrine glands. The defective gene, AIRE, codes for a transcriptional regulator. The AIRE (autoimmune regulator) protein controls the expression of hundreds of genes, representing a substantial subset of tissue-specific antigens which are presented to developing T cells in the thymus and has proven to be a key molecule in the establishment of immunological tolerance. However, the molecular mechanisms by which AIRE mediates its functions are still largely obscure. The aim of this thesis has been to elucidate the functions of AIRE by studying the molecular interactions it is involved in by utilizing different cultured cell models. A potential molecular mechanism for exceptional, dominant, inheritance of APECED in one family, carrying a glycine 228 to tryptophan (G228W) mutation, was described in this thesis. It was shown that the AIRE polypeptide with G228W mutation has a dominant negative effect by binding the wild type AIRE and inhibiting its transactivation capacity in vitro. The data also emphasizes the importance of homomultimerization of AIRE in vivo. Furthermore, two novel protein families interacting with AIRE were identified. The importin alpha molecules regulate the nuclear import of AIRE by binding to the nuclear localization signal of AIRE, delineated as a classical monopartite signal sequence. The interaction of AIRE with PIAS E3 SUMO ligases, indicates a link to the sumoylation pathway, which plays an important role in the regulation of nuclear architecture. It was shown that AIRE is not a target for SUMO modification but enhances the localization of SUMO1 and PIAS1 proteins to nuclear bodies. Additional support for the suggestion that AIRE would preferably up-regulate genes with tissue-specific expression pattern and down-regulate housekeeping genes was obtained from transactivation studies performed with two models: human insulin and cystatin B promoters. Furthermore, AIRE and PIAS activate the insulin promoter concurrently in a transactivation assay, indicating that their interaction is biologically relevant. Identification of novel interaction partners for AIRE provides us information about the molecular pathways involved in the establishment of immunological tolerance and deepens our understanding of the role played by AIRE not only in APECED but possibly also in several other autoimmune diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have systematically analysed the ultra structure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium). The wild-type displayed a number of ER subdomains including parallel tubular/cisternal ER, ER whorls, ER-isolation membrane complexes with abundant autophagy vacuoles and dense bodies. Rut-C30 and its transformant BV47 overexpressing the BiP1-VenusYFP fusion protein also contained parallel tubular/cisternal ER, but no ER whorls; also, there were very few autophagy vacuoles and an increasing amount of punctate bodies where particularly the recombinant BiP1-VenusYFPfusion protein was localised. The early presence of distinct strain-specific features such as the dominance of ER whorls in the wild type and tub/cis ER in Rut-C30 suggests that these are inherent traits and not solely a result of cellular response mechanisms by the high secreting mutant to protein overload.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton ecology and productivity is one of the main branches of contemporary oceanographic research. Research groups in this branch have increasingly started to utilise bio-optical applications. My main research objective was to critically investigate the advantages and deficiencies of the fast repetition rate (FRR) fluorometry for studies of productivity of phytoplankton, and the responses of phytoplankton towards varying environmental stress. Second, I aimed to clarify the applicability of the FRR system to the optical environment of the Baltic Sea. The FRR system offers a highly dynamic tool for studies of phytoplankton photophysiology and productivity both in the field and in a controlled environment. The FRR metrics obtain high-frequency in situ determinations of the light-acclimative and photosynthetic parameters of intact phytoplankton communities. The measurement protocol is relatively easy to use without phases requiring analytical determinations. The most notable application of the FRR system lies in its potential for making primary productivity (PP) estimations. However, the realisation of this scheme is not straightforward. The FRR-PP, based on the photosynthetic electron flow (PEF) rate, are linearly related to the photosynthetic gas exchange (fixation of 14C) PP only in environments where the photosynthesis is light-limited. If the light limitation is not present, as is usually the case in the near-surface layers of the water column, the two PP approaches will deviate. The prompt response of the PEF rate to the short-term variability in the natural light field makes the field comparisons between the PEF-PP and the 14C-PP difficult to interpret, because this variability is averaged out in the 14C-incubations. Furthermore, the FRR based PP models are tuned to closely follow the vertical pattern of the underwater irradiance. Due to the photoacclimational plasticity of phytoplankton, this easily leads to overestimates of water column PP, if precautionary measures are not taken. Natural phytoplankton is subject to broad-waveband light. Active non-spectral bio-optical instruments, like the FRR fluorometer, emit light in a relatively narrow waveband, which by its nature does not represent the in situ light field. Thus, the spectrally-dependent parameters provided by the FRR system need to be spectrally scaled to the natural light field of the Baltic Sea. In general, the requirement of spectral scaling in the water bodies under terrestrial impact concerns all light-adaptive parameters provided by any active non-spectral bio-optical technique. The FRR system can be adopted to studies of all phytoplankton that possess efficient light harvesting in the waveband matching the bluish FRR excitation. Although these taxa cover the large bulk of all the phytoplankton taxa, one exception with a pronounced ecological significance is found in the Baltic Sea. The FRR system cannot be used to monitor the photophysiology of the cyanobacterial taxa harvesting light in the yellow-red waveband. These taxa include the ecologically-significant bloom-forming cyanobacterial taxa in the Baltic Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual pigments of different animal species must have evolved at some stage to match the prevailing light environments, since all visual functions depend on their ability to absorb available photons and transduce the event into a reliable neural signal. There is a large literature on correlation between the light environment and spectral sensitivity between different fish species. However, little work has been done on evolutionary adaptation between separated populations within species. More generally, little is known about the rate of evolutionary adaptation to changing spectral environments. The objective of this thesis is to illuminate the constraints under which the evolutionary tuning of visual pigments works as evident in: scope, tempo, available molecular routes, and signal/noise trade-offs. Aquatic environments offer Nature s own laboratories for research on visual pigment properties, as naturally occurring light environments offer an enormous range of variation in both spectral composition and intensity. The present thesis focuses on the visual pigments that serve dim-light vision in two groups of model species, teleost fishes and mysid crustaceans. The geographical emphasis is in the brackish Baltic Sea area with its well-known postglacial isolation history and its aquatic fauna of both marine and fresh-water origin. The absorbance spectrum of the (single) dim-light visual pigment were recorded by microspectrophotometry (MSP) in single rods of 26 fish species and single rhabdoms of 8 opossum shrimp populations of the genus Mysis inhabiting marine, brackish or freshwater environments. Additionally, spectral sensitivity was determined from six Mysis populations by electroretinogram (ERG) recording. The rod opsin gene was sequenced in individuals of four allopatric populations of the sand goby (Pomatoschistus minutus). Rod opsins of two other goby species were investigated as outgroups for comparison. Rod absorbance spectra of the Baltic subspecies or populations of the primarily marine species herring (Clupea harengus membras), sand goby (P. minutus), and flounder (Platichthys flesus) were long-wavelength-shifted compared to their marine populations. The spectral shifts are consistent with adaptation for improved quantum catch (QC) as well as improved signal-to-noise ratio (SNR) of vision in the Baltic light environment. Since the chromophore of the pigment was pure A1 in all cases, this has apparently been achieved by evolutionary tuning of the opsin visual pigment. By contrast, no opsin-based differences were evident between lake and sea populations of species of fresh-water origin, which can tune their pigment by varying chromophore ratios. A more detailed analysis of differences in absorbance spectra and opsin sequence between and within populations was conducted using the sand goby as model species. Four allopatric populations from the Baltic Sea (B), Swedish west coast (S), English Channel (E), and Adriatic Sea (A) were examined. Rod absorbance spectra, characterized by the wavelength of maximum absorbance (λmax), differed between populations and correlated with differences in the spectral light transmission of the respective water bodies. The greatest λmax shift as well as the greatest opsin sequence difference was between the Baltic and the Adriatic populations. The significant within-population variation of the Baltic λmax values (506-511 nm) was analyzed on the level of individuals and was shown to correlate well with opsin sequence substitutions. The sequences of individuals with λmax at shorter wavelengths were identical to that of the Swedish population, whereas those with λmax at longer wavelengths additionally had substitution F261F/Y in the sixth transmembrane helix of the protein. This substitution (Y261) was also present in the Baltic common gobies and is known to redshift spectra. The tuning mechanism of the long-wavelength type Baltic sand gobies is assumed to be the co-expression of F261 and Y261 in all rods to produce ≈ 5 nm redshift. The polymorphism of the Baltic sand goby population possibly indicates ambiguous selection pressures in the Baltic Sea. The visual pigments of all lake populations of the opossum shrimp (Mysis relicta) were red-shifted by 25 nm compared with all Baltic Sea populations. This is calculated to confer a significant advantage in both QC and SNR in many humus-rich lakes with reddish water. Since only A2 chromophore was present, the differences obviously reflect evolutionary tuning of the visual protein, the opsin. The changes have occurred within the ca. 9000 years that the lakes have been isolated from the Sea after the most recent glaciation. At present, it seems that the mechanism explaining the spectral differences between lake and sea populations is not an amino acid substitution at any other conventional tuning site, but the mechanism is yet to be found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses my video installation Running Men as an example of how an artist’s appropriative engagements with screen images of the perilous body can reflect the technological zeitgeist of the last hundred years but also create a space of meditative and mediated reflection in Slavoj Žižek’s “endlessness” of the present-future. In this artwork, iconic male characters from Hollywood films are recontextualised to create infinitely looping scenes of running; trapping the characters in a kind of Nietchzen eternal recurrence that suspends them between impending violence and uncertain futures. Stemming primarily from my investigation into anxiety as a shared social experience, one perhaps primed by the increasing intensity of visual culture in the 21st century, these digitally reconfigured bodies become avatars or surrogates for myself, and for the viewer. Through selective editing, these emblematic figures are caught in a space of relentless confusion and paranoia – they run with, and from anxiety. They are never caught by any unseen pursuers, but are equally unable to catch up to any unseen goal. These figures map an historical trajectory of violence and masculinity as it has been projected through various iterations of screen culture Simultaneously, as celebrities, they are also fictions of the media sphere, both real and ethereal, they are impossible to grasp but paradoxically are objects of identification and emulation. In this duality, the work also references cinema’s tangled conflation of character and celebrity identity. This discussion will address the two distinct but connected sites and activities of body/image engagement. Firstly, the artistic process and conceptual ramifications of this activity, and secondly in the artwork’s potential as an installation to provide an opportunity for the viewer (like the artist) to reflect on the constructed-ness and complicated power structures at play in the representation of a gendered body.