1000 resultados para Transport planes.
Resumo:
Although the acetone-butanol-ethanol (ABE) fermentation of Clostridium acetobutylicum is currently uneconomic, the ability of the bacterium to metabolise a wide range of carbohydrates offers the potential for revival based on the use of cheap, low grade substrates. We have investigated the uptake and metabolism of lactose, the major sugar in industrial whey waste, by C. acetobutylicum ATCC 824. Lactose is taken up via a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) comprising both soluble and membrane-associated components, and the resulting phosphorylated derivative is hydrolysed by a phospho--galactosidase. These activities are induced during growth on lactose, but are absent in glucose-grown cells. Analysis of the C. acetobutylicum genome sequence identified a gene system, lacRFEG, encoding a transcriptional regulator of the DeoR family, IIA and IICB components of a lactose PTS, and phospho--galactosidase. During growth in medium containing both glucose and lactose, C. acetobutylicum exhibited a classical diauxic growth, and the lac operon was not expressed until glucose was exhausted from the medium. The presence upstream of lacR of a potential catabolite responsive element (cre) encompassing the transcriptional start site is indicative of the mechanism of carbon catabolite repression characteristic of low-GC Gram-positive bacteria. A pathway for the uptake and metabolism of lactose by this industrially important organism is proposed.
Resumo:
This paper focuses on the analysis of the relationship between maritime trade and transport cost in Latin America. The analysis is based on disaggregated (SITC 5 digit level) trade data for intra Latin maritime trade routes over the period 1999-2004. The research contributes to the literature by disentangling the effects of transport costs on the range of traded goods (extensive margin) and the traded volumes of goods (intensive margin) of international trade in order to test some of the predictions of the trade theories that introduce firm heterogeneity in productivity, as well as fixed costs of exporting. Recent investigations show that spatial frictions (distance) reduce trade mainly by trimming the number of shipments and that most firms ship only to geographically proximate customers, instead of shipping to many destinations in quantities that decrease in distance. Our analyses confirm these findings and show that the opposite pattern is observed for ad-valorem freight rates that reduce aggregate trade values mainly by reducing the volume of imported goods (intensive margin).
Resumo:
Is it conceivable to contemplate a future without the car as the center of an urban transportation system? Can emerging economies grow without concomitant growth in car usage? San Pedro Sula, Honduras, is one city at a critical decision point about the future of transportation and mobility. Will it be a sustainable transport future that balances economic, environmental and social needs or will it be the traditional “predict and provide” approach that attempts to expand the capacity of the road system to meet future travel demand. This paper provides some background into the issue for this Central American city by describing the current urban transport system, current plans for improvement and outlines a process for defining a vision for a sustainable transport future in San Pedro Sula. The paper concludes with a challenge to all cities that currently have low automobile ownership rates to consider a sustainable transport system in order to “thrive” with transport choices for all residents rather than “choke” on congestion and the negative side effects thereof.
Resumo:
The taxicab provides a significant contribution to the accessibility of a city and provides a wide range of services across many social groups. Considering the role of the taxi this books examines the impacts that the mode currently has, and how it may continue to develop in the provision of access within the city.
Resumo:
We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ].
Resumo:
Recent measurements of local-area and wide-area traffic have shown that network traffic exhibits variability at a wide range of scales self-similarity. In this paper, we examine a mechanism that gives rise to self-similar network traffic and present some of its performance implications. The mechanism we study is the transfer of files or messages whose size is drawn from a heavy-tailed distribution. We examine its effects through detailed transport-level simulations of multiple TCP streams in an internetwork. First, we show that in a "realistic" client/server network environment i.e., one with bounded resources and coupling among traffic sources competing for resources the degree to which file sizes are heavy-tailed can directly determine the degree of traffic self-similarity at the link level. We show that this causal relationship is not significantly affected by changes in network resources (bottleneck bandwidth and buffer capacity), network topology, the influence of cross-traffic, or the distribution of interarrival times. Second, we show that properties of the transport layer play an important role in preserving and modulating this relationship. In particular, the reliable transmission and flow control mechanisms of TCP (Reno, Tahoe, or Vegas) serve to maintain the long-range dependency structure induced by heavy-tailed file size distributions. In contrast, if a non-flow-controlled and unreliable (UDP-based) transport protocol is used, the resulting traffic shows little self-similar characteristics: although still bursty at short time scales, it has little long-range dependence. If flow-controlled, unreliable transport is employed, the degree of traffic self-similarity is positively correlated with the degree of throttling at the source. Third, in exploring the relationship between file sizes, transport protocols, and self-similarity, we are also able to show some of the performance implications of self-similarity. We present data on the relationship between traffic self-similarity and network performance as captured by performance measures including packet loss rate, retransmission rate, and queueing delay. Increased self-similarity, as expected, results in degradation of performance. Queueing delay, in particular, exhibits a drastic increase with increasing self-similarity. Throughput-related measures such as packet loss and retransmission rate, however, increase only gradually with increasing traffic self-similarity as long as reliable, flow-controlled transport protocol is used.
Resumo:
We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.
Resumo:
Transport protocols are an integral part of the inter-process communication (IPC) service used by application processes to communicate over the network infrastructure. With almost 30 years of research on transport, one would have hoped that we have a good handle on the problem. Unfortunately, that is not true. As the Internet continues to grow, new network technologies and new applications continue to emerge putting transport protocols in a never-ending flux as they are continuously adapted for these new environments. In this work, we propose a clean-slate transport architecture that renders all possible transport solutions as simply combinations of policies instantiated on a single common structure. We identify a minimal set of mechanisms that once instantiated with the appropriate policies allows any transport solution to be realized. Given our proposed architecture, we contend that there are no more transport protocols to design—only policies to specify. We implement our transport architecture in a declarative language, Network Datalog (NDlog), making the specification of different transport policies easy, compact, reusable, dynamically configurable and potentially verifiable. In NDlog, transport state is represented as database relations, state is updated/queried using database operations, and transport policies are specified using declarative rules. We identify limitations with NDlog that could potentially threaten the correctness of our specification. We propose several language extensions to NDlog that would significantly improve the programmability of transport policies.
Resumo:
We revisit the problem of connection management for reliable transport. At one extreme, a pure soft-state (SS) approach (as in Delta-t [9]) safely removes the state of a connection at the sender and receiver once the state timers expire without the need for explicit removal messages. And new connections are established without an explicit handshaking phase. On the other hand, a hybrid hard-state/soft-state (HS+SS) approach (as in TCP) uses both explicit handshaking as well as timer-based management of the connection’s state. In this paper, we consider the worst-case scenario of reliable single-message communication, and develop a common analytical model that can be instantiated to capture either the SS approach or the HS+SS approach. We compare the two approaches in terms of goodput, message and state overhead. We also use simulations to compare against other approaches, and evaluate them in terms of correctness (with respect to data loss and duplication) and robustness to bad network conditions (high message loss rate and variable channel delays). Our results show that the SS approach is more robust, and has lower message overhead. On the other hand, SS requires more memory to keep connection states, which reduces goodput. Given memories are getting bigger and cheaper, SS presents the best choice over bandwidth-constrained, error-prone networks.
Resumo:
Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.
Resumo:
This thesis is focused on the application of numerical atomic basis sets in studies of the structural, electronic and transport properties of silicon nanowire structures from first-principles within the framework of Density Functional Theory. First we critically examine the applied methodology and then offer predictions regarding the transport properties and realisation of silicon nanowire devices. The performance of numerical atomic orbitals is benchmarked against calculations performed with plane waves basis sets. After establishing the convergence of total energy and electronic structure calculations with increasing basis size we have shown that their quality greatly improves with the optimisation of the contraction for a fixed basis size. The double zeta polarised basis offers a reasonable approximation to study structural and electronic properties and transferability exists between various nanowire structures. This is most important to reduce the computational cost. The impact of basis sets on transport properties in silicon nanowires with oxygen and dopant impurities have also been studied. It is found that whilst transmission features quantitatively converge with increasing contraction there is a weaker dependence on basis set for the mean free path; the double zeta polarised basis offers a good compromise whereas the single zeta basis set yields qualitatively reasonable results. Studying the transport properties of nanowire-based transistor setups with p+-n-p+ and p+-i-p+ doping profiles it is shown that charge self-consistency affects the I-V characteristics more significantly than the basis set choice. It is predicted that such ultrascaled (3 nm length) transistors would show degraded performance due to relatively high source-drain tunnelling currents. Finally, it is shown the hole mobility of Si nanowires nominally doped with boron decreases monotonically with decreasing width at fixed doping density and increasing dopant concentration. Significant mobility variations are identified which can explain experimental observations.
Resumo:
The substitution of a small fraction x of nitrogen atoms, for the group V elements in conventional III-V semiconductors such as GaAs and GaSb strongly perturbs the conduction band of the host semiconductor. In this thesis we investigate the effects of nitrogen states on the band dispersion, carrier scattering and mobility of dilute nitride alloys. In the supercell model we solve the single particle Hamiltonian for a very large supercell containing randomly placed nitrogen. This model predicts a gap in the density of states of GaNxAs1−x, where this gap is filled in the Green’s function model. Therefore we develop a self-consistent Green’s function (SCGF) approach, which provides excellent agreement with supercell calculations and reveals a gap in the DOS, in contrast with the results of previous non-self-consistent Green’s function calculations. However, including the distribution of N states destroys this gap, as seen in experiment. We then examine the high field transport of carriers by solving the steadystate Boltzmann transport equation and find that it is necessary to include the full distribution of N levels in order to account for the small, low-field mobility and the absence of a negative differential velocity regime observed experimentally with increasing x. Overall the results account well for a wide range of experimental data. We also investigate the band structure, scattering and mobility of carriers by finding the poles of the SCGF, which gives lower carrier mobility for GaNxAs1−x, compared to those already calculated, in better agreement with experiments. The calculated optical absorption spectra for InyGa1−yNxAs1−x and GaNxSb1−x using the SCGF agree well with the experimental data, confirming the validity of this approach to study the band structure of these materials.
Resumo:
The case for energy policy modelling is strong in Ireland, where stringent EU climate targets are projected to be overshot by 2015. Policy targets aiming to deliver greenhouse gas and renewable energy targets have been made, but it is unclear what savings are to be achieved and from which sectors. Concurrently, the growth of personal mobility has caused an astonishing increase in CO2 emissions from private cars in Ireland, a 37% rise between 2000 and 2008, and while there have been improvements in the efficiency of car technology, there was no decrease in the energy intensity of the car fleet in the same period. This thesis increases the capacity for evidenced-based policymaking in Ireland by developing techno-economic transport energy models and using them to analyse historical trends and to project possible future scenarios. A central focus of this thesis is to understand the effect of the car fleet‘s evolving technical characteristics on energy demand. A car stock model is developed to analyse this question from three angles: Firstly, analysis of car registration and activity data between 2000 and 2008 examines the trends which brought about the surge in energy demand. Secondly, the car stock is modelled into the future and is used to populate a baseline “no new policy” scenario, looking at the impact of recent (2008-2011) policy and purchasing developments on projected energy demand and emissions. Thirdly, a range of technology efficiency, fuel switching and behavioural scenarios are developed up to 2025 in order to indicate the emissions abatement and renewable energy penetration potential from alternative policy packages. In particular, an ambitious car fleet electrification target for Ireland is examined. The car stock model‘s functionality is extended by linking it with other models: LEAP-Ireland, a bottom-up energy demand model for all energy sectors in the country; Irish TIMES, a linear optimisation energy system model; and COPERT, a pollution model. The methodology is also adapted to analyse trends in freight energy demand in a similar way. Finally, this thesis addresses the gap in the representation of travel behaviour in linear energy systems models. A novel methodology is developed and case studies for Ireland and California are presented using the TIMES model. Transport Energy
Resumo:
We investigate transport properties of molecular junctions under two types of bias--a short time pulse or an ac bias--by combining a solution for Green's functions in the time domain with electronic structure information coming from ab initio density functional calculations. We find that the short time response depends on lead structure, bias voltage, and barrier heights both at the molecule-lead contacts and within molecules. Under a low frequency ac bias, the electron flow either tracks or leads the bias signal (resistive or capacitive response) depending on whether the junction is perfectly conducting or not. For high frequency, the current lags the bias signal due to the kinetic inductance. The transition frequency is an intrinsic property of the junctions.