997 resultados para Transient absorption
Resumo:
Objective: The buccal absorption of captopril does not exhibit the classical pH/partition hypothesis, suggesting that mechanisms other than passive diffusion are involved in its absorption; animal studies have suggested that a peptide carrier-mediated transport system may be responsible for its absorption. The present study evaluated the effects of pH on octanol partitioning, and on the buccal absorption of enalapril and lisinopril, using in vitro techniques and buccal partitioning in human volunteer subjects.
Resumo:
We report what is to our knowledge the first demonstration of a transient x-ray laser pumped by a 350-fs pulse in a traveling-wave irradiation geometry. For a 500-fs pump pulse the traveling-wave irradiation was found to have a strong effect on enhancing the Ni-like silver 4d-4p lasing emission at 13.9 nm. The signal enhancement was significantly less when the pulse duration was lengthened to 1.7 ps. The experimental observations are well reproduced by a simple model when the duration of gain is taken of the order of 15-20 ps. For the 500-fs pulse a gain coefficient of 14.5 cm(-1) was measured for plasma lengths up to 7 mm. Refraction of the amplified photons is believed to be the main cause of the limitation of the effective amplification length. (C) 2000 Optical Society of America.
Resumo:
The collisionally excited transient inversion scheme is shown to produce exceptionally high gain coefficients and gain-length products. Data are presented for the Ne-Like titanium and germanium and Ni-like silver X-ray lasers (XRL's) pumped using a combination of nanosecond and picosecond duration laser pulses. This method leads to a dramatic reduction of the required pump energy and makes down-sizing of XRL's possible, an important prerequisite if they are to become commonly used tools in the Long-term.
Resumo:
A similar to 3 ps travelling wave chirped pulse amplified pulse at 6 x 10(14) W cm(-2) superimposed on similar to 300 ps background pulses is shown to be an efficient method to pump transient collisional excitation X-ray lasers in both Ni-like and Ne-like ions. Measurements of X-ray laser output as a function of plasma length are fitted with results of an amplified spontaneous emission model of the laser output taking account of travelling wave pumping effects. A small signal gain coefficient similar to 42 cm(-1) and a effective gain length product of similar to 18 are measured for the Ni-like Sn laser at 120 Angstrom. Simulations from a hydrodynamic and atomic physics code (EHYBRID) coupled to a ray trace code show that a spatially averaged small signal gain similar to 65 cm(-1) can be obtained in Ne-like Ge provided the optimum pumping pulse arrangement is used. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Saturation of a low pump energy x-ray laser utilizing a transient inversion mechanism on the 3p-3s transition at 32.63 nm in Ne-like Ti has been demonstrated. A close to saturation amplification was simultaneously achieved for the 3d-3p, J=1-->1 transition at 30.15 nm. Small signal effective transient gain coefficients of g similar to 46 and similar to 35 cm(-1) and gain-length products of 16.7 and 16.9 for these lines were obtained. Experiments demonstrate that it is possible to achieve saturated laser action in a transient regime with Ne-like Ti for a pump energy as low as similar to 5 J.
Resumo:
The transient-excitation pumping scheme, in which a picosecond duration pulse rapidly heats the plasma preformed by a low-intensity nanosecond pulse, was used to pump the Ne-like germanium, J = 0-1 transition at 19.6 nm. A small-signal gain coefficient of 30 cm(-1) was measured for targets less than or equal to 5 mm long. (C) 1998 Optical Society of America.
Resumo:
Aims. Massive stars in low-metallicity environments may produce exotic explosions such as long-duration gamma-ray bursts and pair-instability supernovae when they die as core-collapse supernovae (CCSNe). Such events are predicted to be relatively common in the early Universe during the first episodes of star-formation. To understand these distant explosions it is vital to study nearby CCSNe arising in low-metallicity environments to determine if the explosions have different characteristics to those studied locally in high-metallicity galaxies. Many of the nearby supernova searches concentrate their efforts on high star-formation rate galaxies, hence biasing the discoveries to metal rich regimes. Here we determine the feasibility of searching for these CCSNe in metal-poor dwarf galaxies using various survey strategies.
Resumo:
The technique of point-projection spectroscopy has been shown to be applicable to the study of expanding aluminum plasmas generated by approximately 80 ps laser pulses incident on massive, aluminum stripe targets of approximately 125-mu-m width. Targets were irradiated at an intensity of 2.5 +/- 0.5 x 10(13) W/cm2 in a line focus geometry and under conditions similar to those of interest in x-ray laser schemes. Hydrogenic and heliumlike aluminum resonance lines were observed in absorption using a quasicontinuous uranium back-lighter plasma. Using a pentaerythrital Bragg crystal as the dispersive element, a resolving power of approximately 3500 was achieved with spatial resolution at the 5-mu-m level in frame times of the order of 100 ps. Reduction of the data for times up to 150 ps after the peak of the incident laser pulse produced estimates of the temperature and ion densities present, as a function of space and time. The one-dimensional Lagrangian hydrodynamic code MEDUSA coupled to the atomic physics non-local-thermodynamic-equilibrium ionized material package was used to simulate the experiment in planar geometry and has been shown to be consistent with the measurements.