993 resultados para Transcription, Genetic -- drug effects
Resumo:
This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19-21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work.
Resumo:
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds to major histocompatibility complex class II molecules and selectively interacts with T cells that bear certain T cell receptor (TCR) V beta domains. Administration of SEB in adult mice results in initial proliferation of V beta 8+ T cells followed by a state of unresponsiveness resulting from a combination of clonal deletion and clonal anergy in the SEB-reactive population. At this time, it is unclear what relationship exists between the T cells that have proliferated and those that have been deleted or have become anergic. Here we show that only a fraction of the potentially reactive V beta 8+ T cells proliferate in response to SEB in vivo, and that all the cells that have proliferated eventually undergo apoptosis. Virtually no apoptosis can be detected in the nonproliferating V beta 8+ T cells. These data demonstrate a causal relationship between proliferation and apoptosis in response to SEB in vivo, and they further indicate that T cells bearing the same TCR V beta segment can respond differently to the same superantigen. The implications of this differential responsiveness in terms of activation and tolerance are discussed.
Resumo:
CCAAT/enhancer-binding protein (C/EBP) family members are transcription factors involved in important physiological processes, such as cellular proliferation and differentiation, regulation of energy homeostasis, inflammation, and hematopoiesis. Transcriptional activation by C/EBPalpha and C/EBPbeta involves the coactivators CREB-binding protein (CBP) and p300, which promote transcription by acetylating histones and recruiting basal transcription factors. In this study, we show that C/EBPdelta is also using CBP as a coactivator. Based on sequence homology with C/EBPalpha and -beta, we identify in C/EBPdelta two conserved amino acid segments that are necessary for the physical interaction with CBP. Using reporter gene assays, we demonstrate that mutation of these residues prevents CBP recruitment and diminishes the transactivating potential of C/EBPdelta. In addition, our results indicate that C/EBP family members not only recruit CBP but specifically induce its phosphorylation. We provide evidence that CBP phosphorylation depends on its interaction with C/EBPdelta and define point mutations within one of the two conserved amino acid segments of C/EBPdelta that abolish CBP phosphorylation as well as transcriptional activation, suggesting that this new mechanism could be important for C/EBP-mediated transcription.
Resumo:
Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.
Resumo:
Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor.
Resumo:
PURPOSE: To investigate the involvement of the cornea during endotoxin-induced uveitis (EIU) in the rat and the effect of Ngamma-nitro-L-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor, administered by iontophoresis. METHODS: EIU was induced in Lewis rats that were killed at 8 and 16 hours after lipopolysaccharide (LPS) injection. The severity of uveitis was evaluated clinically at 16 hours, and nitrite levels were evaluated in the aqueous humor at 8 hours. Corneal thickness was measured, 16 hours after LPS injection, on histologic sections using an image analyzer. Transmission electron microscopy (TEM) was used for fine analysis of the cornea. Transcorneoscleral iontophoresis of L-NAME (100 mM) was performed either at LPS injection or at 1 and 2 hours after LPS injection. RESULTS: At 16 hours after LPS injection, mean corneal thickness was 153.7+/-5.58 microm in the group of rats injected with LPS (n=8) compared with 126.89+/-11.11 microm in the saline-injected rats (n=8) (P < 0.01). TEM showed stromal edema and signs of damage in the endothelial and epithelial layers. In the group of rats treated by three successive iontophoreses of L-NAME (n=8), corneal thickness was 125.24+/-10.36 microm compared with 146.76+/-7.52 microm in the group of rats treated with iontophoresis of saline (n=8), (P=0.015). TEM observation showed a reduction of stromal edema and a normal endothelium. Nitrite levels in the aqueous humor were significantly reduced at 8 hours by L-NAME treatment (P=0.03). No effect on corneal edema was observed after a single iontophoresis of L-NAME at LPS injection (P=0.19). Iontophoresis of saline by itself induced no change in corneal thickness nor in TEM structure analysis compared with normal rats. CONCLUSIONS: Corneal edema is observed during EIU. This edema is significantly reduced by three successive iontophoreses of L-NAME, which partially inhibited the inflammation. A role of nitric oxide in the corneal endothelium functions may explain the antiedematous effect of L-NAME.
Resumo:
OBJECTIVE: Barbiturate-induced coma can be used in patients to treat intractable intracranial hypertension when other therapies, such as osmotic therapy and sedation, have failed. Despite control of intracranial pressure, cerebral infarction may still occur in some patients, and the effect of barbiturates on outcome remains uncertain. In this study, we examined the relationship between barbiturate infusion and brain tissue oxygen (PbtO2). METHODS: Ten volume-resuscitated brain-injured patients who were treated with pentobarbital infusion for intracranial hypertension and underwent PbtO2 monitoring were studied in a neurosurgical intensive care unit at a university-based Level I trauma center. PbtO2, intracranial pressure (ICP), mean arterial pressure, cerebral perfusion pressure (CPP), and brain temperature were continuously monitored and compared in settings in which barbiturates were or were not administered. RESULTS: Data were available from 1595 hours of PbtO2 monitoring. When pentobarbital administration began, the mean ICP, CPP, and PbtO2 were 18 +/- 10, 72 +/- 18, and 28 +/- 12 mm Hg, respectively. During the 3 hours before barbiturate infusion, the maximum ICP was 24 +/- 13 mm Hg and the minimum CPP was 65 +/- 20 mm Hg. In the majority of patients (70%), we observed an increase in PbtO2 associated with pentobarbital infusion. Within this group, logistic regression analysis demonstrated that a higher likelihood of compromised brain oxygen (PbtO2 < 20 mm Hg) was associated with a decrease in pentobarbital dose after controlling for ICP and other physiological parameters (P < 0.001). In the remaining 3 patients, pentobarbital was associated with lower PbtO2 levels. These patients had higher ICP, lower CPP, and later initiation of barbiturates compared with patients whose PbtO2 increased. CONCLUSION: Our preliminary findings suggest that pentobarbital administered for intractable intracranial hypertension is associated with a significant and independent increase in PbtO2 in the majority of patients. However, in some patients with more compromised brain physiology, pentobarbital may have a negative effect on PbtO2, particularly if administered late. Larger studies are needed to examine the relationship between barbiturates and cerebral oxygenation in brain-injured patients with refractory intracranial hypertension and to determine whether PbtO2 responses can help guide therapy.
Resumo:
Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.
Resumo:
Particular bacterial strains in certain natural environments prevent infectious diseases of plant roots. How these bacteria achieve this protection from pathogenic fungi has been analysed in detail in biocontrol strains of fluorescent pseudomonads. During root colonization, these bacteria produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors. Before engaging in these activities, biocontrol bacteria go through several regulatory processes at the transcriptional and post-transcriptional levels.
Resumo:
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
By using an in vitro model of antibody-mediated demyelination, we investigated the relationship between tumor necrosis factor-alpha (TNF-alpha) and heat shock protein (HSP) induction with respect to oligodendrocyte survival. Differentiated aggregate cultures of rat telencephalon were subjected to demyelination by exposure to antibodies against myelin oligodendrocyte glycoprotein (MOG) and complement. Cultures were analyzed 48 hr after exposure. Myelin basic protein (MBP) expression was greatly decreased, but no evidence was found for either necrosis or apoptosis. TNF-alpha was significantly up-regulated. It was localized predominantly in neurons and to a lesser extent in astrocytes and oligodendrocytes, and it was not detectable in microglial cells. Among the different HSPs examined, HSP32 and alphaB-crystallin were up-regulated; they may confer protection from oxidative stress and from apoptotic death, respectively. These results suggest that TNF-alpha, often regarded as a promoter of oligodendroglial death, could alternatively mediate a protective pathway through alphaB-crystallin up-regulation.
Resumo:
FLICE-inhibitory protein, FLIP (Casper/I-FLICE/FLAME-1/CASH/CLARP/MRIT), which contains two death effector domains and an inactive caspase domain, binds to FADD and caspase-8, and thereby inhibits death receptor-mediated apoptosis. Here, we characterize the inhibitory effect of FLIP on a variety of apoptotic pathways. Human Jurkat T cells undergoing Fas ligand-mediated apoptosis in response to CD3 activation were completely resistant when transfected with FLIP. In contrast, the presence of FLIP did not affect apoptosis induced by granzyme B in combination with adenovirus or perforin. Moreover, the Fas ligand, but not the perforin/granzyme B-dependent lytic pathway of CTL, was inhibited by FLIP. Apoptosis mediated by chemotherapeutic drugs (i.e., doxorubicin, etoposide, and vincristine) and gamma irradiation was not affected by FLIP or the absence of Fas, indicating that these treatments can induce cell death in a Fas-independent and FLIP-insensitive manner.
Resumo:
The effect of intravenous (i.v.) torasemide on diuresis and renal function was evaluated in three groups of normoxemic, 5- to 10-day-old, newborn New Zealand White rabbits. The animals of group 1 received 0.2 mg/kg of torasemide i.v., whereas in group 2 an i.v. dose of 1.0 mg/kg was given. The third group of animals received a bolus i.v. dose of 1.0 mg/kg torasemide with continuous i.v. replacement of estimated urinary fluid and electrolyte losses. Torasemide proved to be an effective, potassium-sparing diuretic, without significant effect on glomerular filtration rate (GFR). Renal blood flow (RBF) fell and the renal vascular resistance (RVR) rose in all three groups of animals, although the rise in RVR in group 3 was not significant. These changes in renal hemodynamics were most pronounced in the animals of group 2 and are probably secondary to torasemide-induced hypovolemia (2.8% loss of body weight) and accompanying humoral reactions, such as an increase in angiotensin II (not measured). When the latter is prevented by simultaneous re-infusion of an electrolyte solution (group 3), replacing urinary losses, GFR increases and the changes in RBF and RVR are blunted. We conclude that torasemide is an effective, potassium-sparing diuretic in newborn rabbits. No evidence was found for a vasodilatory action of the drug.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism, is overexpressed in many cancers. Inhibition of COX-2 by nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of cancer development in humans and suppresses tumor growth in animal models. The anti-cancer effect of NSAIDs seems to involve suppression of tumor angiogenesis, but the underlying mechanism is not completely understood. Integrin alpha V beta 3 is an adhesion receptor critically involved in mediating tumor angiogenesis. Here we show that inhibition of endothelial-cell COX-2 by NSAIDs suppresses alpha V beta 3-dependent activation of the small GTPases Cdc42 and Rac, resulting in inhibition of endothelial-cell spreading and migration in vitro and suppression of fibroblast growth factor-2-induced angiogenesis in vivo. These results establish a novel functional link between COX-2, integrin alpha V beta 3 and Cdc42-/Rac-dependent endothelial-cell migration. Moreover, they provide a rationale to the understanding of the anti-angiogenic activity of NSAIDs.