990 resultados para Tone Sequences


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting with a UML specification that captures the underlying functionality of some given Java-based concurrent system, we describe a systematic way to construct, from this specification, test sequences for validating an implementation of the system. The approach is to first extend the specification to create UML state machines that directly address those aspects of the system we wish to test. To be specific, the extended UML state machines can capture state information about the number of waiting threads or the number of threads blocked on a given object. Using the SAL model checker we can generate from the extended UML state machines sequences that cover all the various possibilities of events and states. These sequences can then be directly transformed into test sequences suitable for input into a testing tool such as ConAn. As an illustration, the methodology is applied to generate sequences for testing a Java implementation of the producer-consumer system. © 2005 IEEE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sudden increase in the amplitude of a component often causes its segregation from a complex tone, and shorter rise times enhance this effect. We explored whether this also occurs in implant listeners (n?=?8). Condition 1 used a 3.5-s “complex tone” comprising concurrent stimulation on five electrodes distributed across the array of the Nucleus CI24 implant. For each listener, the baseline stimulus level on each electrode was set at 50% of the dynamic range (DR). Two 1-s increments of 12.5%, 25%, or 50% DR were introduced in succession on adjacent electrodes within the “inner” three of those activated. Both increments had rise and fall times of 30 and 970 ms or vice versa. Listeners reported which increment was higher in pitch. Some listeners performed above chance for all increment sizes, but only for 50% increments did all listeners perform above chance. No significant effect of rise time was found. Condition 2 replaced amplitude increments with decrements. Only three listeners performed above chance even for 50% decrements. One exceptional listener performed well for 50% decrements with fall and rise times of 970 and 30 ms but around chance for fall and rise times of 30 and 970 ms, indicating successful discrimination based on a sudden rise back to baseline stimulation. Overall, the results suggest that implant listeners can use amplitude changes against a constant background to pick out components from a complex, but generally these must be large compared with those required in normal hearing. For increments, performance depended mainly on above-baseline stimulation of the target electrodes, not rise time. With one exception, performance for decrements was typically very poor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To elucidate the structures of orgamc molecules in solution using pulse FT NMR, heteronuclear pulse sequence experiments to probe carbon-13 (13C) and proton (1H) spin systems are invaluable. The one-dimensional insensitive nucleus detected PENDANT experiment finds popular use for structure determination via one-bond 13C-1H scalar couplings. PENDANT facilitates the desired increase in 13C signal-to-noise ratio, and unlike many other pulse sequence experiments (e.g., refocused INEPT and DEPT), allows the simultaneous detection of 13C quaternary nuclei. The tlrst chapter herein details the characterisation of PENDANT and the successful rectification of spectral anomalies that occur when it is used without proton broadband decoupling. Multiple-bond (long-range) l3C-1H scalar coupling correlations can yield important bonding information. When the molecule under scrutiny is devoid of proton spectral crowding, and more sensitive 'inverse' pulse sequence experiments are not available, one may use insensitive nucleus detected long-range selective one-dimensional correlation methods, rather than more time consuming and insensitive multidimensional analogues. To this end a novel long-range selective one-dimensional correlation pulse sequence experiment has been invented. Based on PENDANT, the new experiment is shown to rival the popular selective INEPT technique because it can determine the same correlations while simultaneously detecting isolated 13C quaternary nuclei. INEPT cannot facilitate this, potentially leaving other important quaternary nuclei undetected. The novel sequence has been modified further to yield a second novel experiment that simultaneously yields selective 13C transient nOe data. Consequently, the need to perform the two experiments back-to-back is conveniently removed, and the experimental time reduced. Finally, the SNARE pulse sequence was further developed. SNARE facilitates the reduction of experimental time by accelerating the relaxation of protons upon which pulse sequences, to which SNARE is appended, relies. It is shown, contrary to the original publication, that reiaxation time savings can be derived from negative nOes.