970 resultados para Time-resolved spectroscopy
Resumo:
The voltage-dependent anion-selective channel (VDAC) is an intrinsic β-barrel membrane protein located within the mitochondrial outer membrane where it serves as a pore, connecting the mitochondria to the cytosol. The high-resolution structures of both the human and murine VDACs have been resolved by X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) in 2008. However, the structural data are not completely in line with the findings that were obtained after decades of research on biochemical and functional analysis of VDAC. This discrepancy may be related to the fact that structural biology studies of membrane proteins reveal specific static conformations that may not necessarily represent the physiological state. For example, overexpression of membrane proteins in bacterial inclusion bodies or simply the extraction from the native lipid environment using harsh purification methods (i.e. chaotropic agents) can disturb the physiological conformations and the supramolecular assemblies. To address these potential issues, we have developed a method, allowing rapid one step purification of endogenous VDAC expressed in the native mitochondrial membrane without overexpression of recombinant protein or usage of harsh chaotropic extraction procedures. Using the Saccharomyces cerevisiae isoform 1 of VDAC as a model, this method yields efficient purification, preserving VDAC in a more physiological, native state following extraction from mitochondria. Single particle analysis using transmission electron microscopy (TEM) demonstrated conservation of oligomeric assembly after purification. Maintenance of the native state was evaluated using functional assessment that involves an ATP-binding assay by micro-scale thermophoresis (MST). Using this approach, we were able to determine for the first time the apparent KD for ATP of 1.2 mM.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Photopyroelectric spectroscopy (PPE) was used to study the thermal and optical properties of melanins. The photopyroelectric intensity signal and its phase were independently measured as a function of wavelength and chopping frequency for a given wavelength in the saturation part of the PPE spectrum. Equations for both the intensity and the phase of the PPE signal were used to fit the experimental results. From these fits we obtained for the first time, with great accuracy, the thermal diffusivity coefficient, the thermal conductivity, and the specific heat of the samples, as well as a value for the condensed phase optical gap, which we found to be 1.70 eV. (c) 2005 American Institute of Physics.
Resumo:
The gelation profile of yoghurts from conventionally treated (85 degrees C/30 min) and UHT treated (143 degrees C/6s) milks at 16, 18, and 20% total solids was analyzed during fermentation for 4 hrs using the invasive Rapid Visco Analyzer (RVA) and the non-invasive ultrasonic spectroscope. The viscosity measured by the RVA and the ultrasonic velocity measured by the ultrasonic spectroscope exhibited similar sigmoid trends with respect to fermentation time. The ultrasonic spectroscope detected the onset of gelation of yoghurt milk earlier (by an average of 52 min) than did the RVA, indicating a higher sensitivity of ultrasonic spectroscopy. The delay of gelation time of UHT-treated yoghurt milk as compared to conventionally treated yoghurt milk was detected by both techniques. A non-significant ( P > 0.05) effect of solids content in the yoghurt milks on their gelation time was also observed by both instruments.