951 resultados para Time-course expression
Resumo:
IDX-1 (islet/duodenum homeobox-1) is a transcription factor expressed in the duodenum and pancreatic beta and delta cells. It is required for embryonic development of the pancreas and transactivates the Glut2, glucokinase, insulin, and somatostatin genes. Here we show that exposure of isolated rat pancreatic islets to palmitic acid induced a approximately 70% decrease in IDX-1 mRNA and protein expression as well as 40 and 65% decreases in the binding activity of IDX-1 for its cognate cis-regulatory elements of the Glut2 and insulin promoters, respectively. The inhibitory effect of palmitic acid required its mitochondrial oxidation since it was prevented by the carnitine palmitoyltransferase I inhibitor bromopalmitic acid. The palmitic acid effect on IDX-1 was correlated with decreases in GLUT2 and glucokinase expression of 40 and 25%, respectively, at both the mRNA and protein levels. Insulin and somatostatin mRNA expression was also decreased by 40 and 60%, whereas glucagon mRNA expression was not modified. After 48 h of exposure to fatty acids, total islet insulin, somatostatin, and glucagon contents were decreased by 85, 55, and 65%, respectively. At the same time, total hormone release was strongly stimulated (13-fold) for glucagon, whereas its was only marginally increased for insulin and somatostatin (1.5- and 1.7-fold, respectively). These results indicate that elevated fatty acid levels 1) negatively regulate Idx-1 expression; 2) decrease the expression of genes transactivated by IDX-1 such as those for GLUT2, glucokinase, insulin, and somatostatin; and 3) lead to an important increase in glucagon synthesis and secretion. Fatty acids thus have pleiotropic effects on pancreatic islet gene expression, and the negative control of Idx-1 expression may be an initial event in the development of these multiple defects.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: 17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
VAR methods have been used to model the inter-relationships between inflows and outfl ows into unemployment and vacancies using tools such as impulse response analysis. In order to investigate whether such impulse responses change over the course of the business cycle or or over time, this paper uses TVP-VARs for US and Canadian data. For the US, we find interesting differences between the most recent recession and earlier recessions and expansions. In particular, we find the immediate effect of a negative shock on both in ow and out flow hazards to be larger in 2008 than in earlier times. Furthermore, the effect of this shock takes longer to decay. For Canada, we fi nd less evidence of time-variation in impulse responses.
Resumo:
During adult thymus development immature CD4(-)CD8(-) [double-negative (DN)] precursor cells pass through four phenotypically distinct stages defined by expression of CD44 and CD25: CD44(hi)CD25(-) (DN1), CD44(hi)CD25(+) (DN2), CD44(lo)CD25(+) (DN3) and CD44(lo)CD25(-) (DN4). Although it is well established that the TCR beta, gamma and delta genes are rearranged and expressed in association with the CD3 components in DN thymocytes, the precise timing of expression of the TCR and CD3 proteins has not been determined. In this report we have utilized a sensitive intracellular (ic) staining technique to analyze the expression of ic CD3epsilon, TCR beta and TCR gammadelta proteins in immature DN subsets. As expected from previous studies of TCR beta rearrangement and mRNA expression, icTCR beta(+) cells were first detected in the DN3 subset and their proportion increased thereafter. Surprisingly, however, both icCD3epsilon(+) and icTCR gammadelta(+) cells were detected at later stages of development than was predicted by molecular studies. In particular icCD3epsilon protein expression coincided with the transition from the DN2 to DN3 stage of development, whereas icTCR gammadelta protein expression was only detected in a minor subset of DN4 cells. The implications of these findings for alphabeta lineage divergence will be discussed.
Resumo:
In 1995 the working group "Drug Monitoring" of the Swiss Society of Clinical Chemistry (SSCC) has already published a printed version of drug monographs, which are now newly compiled and presented in a standardised manner. The aim of these monographs is to give an overview on the most important informations that are necessary in order to request a drug analysis or is helpful to interpret the results. Therefore, the targeted audience are laboratory health professionals or the receivers of the reports. There is information provided on the indication for therapeutic drug monitoring, protein binding, metabolic pathways and enzymes involved, elimination half life time and elimination routes as well as information on therapeutic or toxic concentrations. Because preanalytical considerations are of particular importance for therapeutic drug monitoring, there is also information given at which time the determination of the drug concentration is reasonable and when steady-state concentrations are reached after changing the dose. Furthermore, the stability of the drug and its metabolite(s), respectively, after blood sampling is described. For readers with a specific interest, references to important publications are given. The number of the monographs will be continuously enlarged. The updated files are presented on the homepage of the SSCC (www.sscc.ch).
Resumo:
Rotation-mediated aggregate cultures of foetal rat liver cells were prepared and grown in a chemically defined medium. Their capacity for cellular organisation and maturation was studied over a culture period of 3 wk by using both morphologic and biochemical criteria. It was found that within each aggregate, distinct liver cell types were present and attained their normal, differentiated phenotype. Parenchymal cells formed small acini with a central lumen. Within the first 2 wk in culture, albumin and ferritin mRNA levels were maintained, while the alpha-fetoprotein mRNA levels decreased, and tyrosine aminotransferase (TAT) gene expression increased. No significant response to glucocorticoids was observed in early cultures, whereas after 3 wk a marked increase in TAT mRNA levels was elicited by dexamethasone and glucagon (additive stimulatory effects). The results show that foetal rat liver cells cultured in a chemically defined medium are able to rearrange themselves into histotypic structures, and display a developmental pattern of gene expression comparable to that of perinatal rat liver in vivo. This culture system offers therefore a useful model to study the development and function of liver cells.