959 resultados para Three-phase power flow
Resumo:
Recently, a new oxygenator (Dideco 903 [D903], Dideco, Mirandola, Italy) has been introduced to the perfusion community, and we set about testing its oxygen transfer performance and then comparing it to two other models. This evaluation was based on the comparison between oxygen transfer slope, gas phase arterial oxygen gradients, degree of blood shunting, maximum oxygen transfer, and diffusing capacity calculated for each membrane. Sixty patients were randomized into three groups of oxygenators (Dideco 703 [D703], Dideco; D903; and Quadrox, Jostra Medizintechnik AG, Hirrlingen, Germany) including 40/20 M/F of 68.6 +/- 11.3 years old, with a body weight of 71.5 +/- 12.1 kg, a body surface area (BSA) of 1.84 +/- 0.3 m(2), and a theoretical blood flow rate (index 2.4 times BSA) of 4.4 +/- 0.7 L/min. The maximum oxygen transfer (VO(2)) values were 313 mL O(2)/min (D703), 579 mL O(2)/min (D903), and 400 mL O(2)/min (Quadrox), with the D903 being the most superior (P < 0.05). Oxygen (O(2)) gradients were 320 mm Hg (D703), 235 mm Hg (D903), and 247 mm Hg (Quadrox), meaning D903 and Quadrox are more efficient versus the D703 (P < 0.05). Shunt fraction (Qs/Qt) and diffusing capacity (DmO(2)) were comparable (P = ns). Diffusing capacity values indexed to BSA (DmO(2)/m(2)) were 0.15 mL O(2)/min/mm Hg/m(2) (D703), 0.2 mL O(2)/min/mm Hg/m(2) (D903), and 0.18 mL O(2)/min/mm Hg/m(2) (Quadrox) with D903 outperforming D703 (P < 0.0005). During hypothermia (32.0 +/- 0.3 degrees C), there was a lower absolute and relative VO(2 )for all three oxygenators (P = ns). The O(2) gradients, DmO(2) and DmO(2)/m(2), were significantly lower for all oxygenators (P < 0.01). Also, Qs/Qt significantly rose for all oxygenators (P < 0.01). The oxygen transfer curve is characteristic to each oxygenator type and represents a tool to quantify oxygenator performance. Using this parameter, we demonstrated significant differences among commercially available oxygenators. However, all three oxygenators are considered to meet the oxygen needs of the patients.
Resumo:
Differences in cytochemical and pathophysiologic abnormalities in experimental meningitis caused by pneumococcal strains A, B, and C were determined. Strain C produced the most severe abnormalities of cerebrospinal fluid (CSF) concentrations of lactate (P less than .01), protein (P less than .02), and glucose (P less than .01), CSF white blood cell count (P less than .04), cerebral blood flow (P less than .02), and clinical signs (P less than .05). Brain edema occurred only with strains A anc C, with no association with disease severity; intracranial hypertension was also independent of disease severity. Strain B, not C, achieved the highest bacterial titers in the CSF (P less than .005). The widely different abilities of strains of Streptococcus pneumoniae to induce intracranial abnormalities suggest that virulence determinants affect not only evasion of defense during colonization and invasion, as shown in other models, but also determine the course of disease once infection has been established. Differences of cell-wall metabolism among pneumococcal strains may play a role in this latter phase of the development of meningitis.
Resumo:
Hybrid MIMO Phased-Array Radar (HMPAR) is an emerging technology that combines MIMO (multiple-in, multiple-out) radar technology with phased-array radar technology. The new technology is in its infancy, but much of the theoretical work for this specific project has already been completed and is explored in great depth in [1]. A brief overview of phased-array radar systems, MIMO radar systems, and the HMPAR paradigm are explored in this paper. This report is the culmination of an effort to support research in MIMO and HMPAR utilizing a concept called intrapulse beamscan. Using intrapulse beamscan, arbitrary spatial coverage can be achieved within one MIMO beam pulse. Therefore, this report focuses on designing waveforms for MIMO radar systems with arbitrary spatial coverage using that phenomenon. With intrapulse beamscan, scanning is done through phase-modulated signal design within one pulse rather than phase-shifters in the phased array over multiple pulses. In addition to using this idea, continuous phase modulation (CPM) signals are considered for their desirable peak-to-average ratio property as well as their low spectral leakage. These MIMO waveforms are designed with three goals in mind. The first goal is to achieve flexible spatial coverage while utilizing intrapulse beamscan. As with almost any radar system, we wish to have flexibility in where we send our signal energy. The second goal is to maintain a peak-to-average ratio close to 1 on the envelope of these waveforms, ensuring a signal that is close to constant modulus. It is desired to have a radar system transmit at the highest available power; not doing so would further diminish the already very small return signals. The third goal is to ensure low spectral leakage using various techniques to limit the bandwidth of the designed signals. Spectral containment is important to avoid interference with systems that utilize nearby frequencies in the electromagnetic spectrum. These three goals are realized allowing for limitations of real radar systems. In addition to flexible spatial coverage, the report examines the spectral properties of utilizing various space-filling techniques for desired spatial areas. The space-filling techniques examined include Hilbert/Peano curves and standard raster scans.
Resumo:
The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.
Resumo:
PURPOSE: To evaluate a widely used nontunneled triple-lumen central venous catheter in order to determine whether the largest of the three lumina (16 gauge) can tolerate high flow rates, such as those required for computed tomographic angiography. MATERIALS AND METHODS: Forty-two catheters were tested in vitro, including 10 new and 32 used catheters (median indwelling time, 5 days). Injection pressures were continuously monitored at the site of the 16-gauge central venous catheter hub. Catheters were injected with 300 and 370 mg of iodine per milliliter of iopamidol by using a mechanical injector at increasing flow rates until the catheter failed. The infusion rate, hub pressure, and location were documented for each failure event. The catheter pressures generated during hand injection by five operators were also analyzed. Mean flow rates and pressures at failure were compared by means of two-tailed Student t test, with differences considered significant at P < .05. RESULTS: Injections of iopamidol with 370 mg of iodine per milliliter generate more pressure than injections of iopamidol with 300 mg of iodine per milliliter at the same injection rate. All catheters failed in the tubing external to the patient. The lowest flow rate at which catheter failure occurred was 9 mL/sec. The lowest hub pressure at failure was 262 pounds per square inch gauge (psig) for new and 213 psig for used catheters. Hand injection of iopamidol with 300 mg of iodine per milliliter generated peak hub pressures ranging from 35 to 72 psig, corresponding to flow rates ranging from 2.5 to 5.0 mL/sec. CONCLUSION: Indwelling use has an effect on catheter material property, but even for used catheters there is a substantial safety margin for power injection with the particular triple-lumen central venous catheter tested in this study, as the manufacturer's recommendation for maximum pressure is 15 psig.
Resumo:
To test a system with milk flow-controlled pulsation, milk flow was recorded in 29 Holstein cows during machine milking. The three different treatments were routine milking (including a pre-stimulation of 50-70 s), milking with a minimum of teat preparation and milking with milk flow-controlled b-phase, i.e. with a gradually elongated b-phase of the pulsation cycle with increasing milk flow rate and shortening again during decreasing milk flow. For data evaluation the herd was divided into three groups based on the peak flow rate at routine milking (group 1: <3.2 kg/min; group 2: 3.2-4.5 kg/min; group 3: >4.5 kg/min). Compared with routine milking, milking with milk flow-controlled b-phase caused a significant elevation of the peak flow rate and the duration of incline lasted longer especially in cows with a peak flow rate of >3.2 kg/min in routine milking. In milking with a minimum of teat preparation the duration of incline lasted longer compared with the two other treatments. Bimodality of milk flow, i.e. delayed milk ejection at the start of milking, was most frequent at milking with a minimum of teat preparation. No significant differences between routine milking and milking with milk flow-controlled b-phase were detected for all other milking characteristics. In summary, milking with milk flow-controlled b-phase changes the course of milk removal, however mainly in cows with high peak flow rates.
Resumo:
This dissertation explores phase I dose-finding designs in cancer trials from three perspectives: the alternative Bayesian dose-escalation rules, a design based on a time-to-dose-limiting toxicity (DLT) model, and a design based on a discrete-time multi-state (DTMS) model. We list alternative Bayesian dose-escalation rules and perform a simulation study for the intra-rule and inter-rule comparisons based on two statistical models to identify the most appropriate rule under certain scenarios. We provide evidence that all the Bayesian rules outperform the traditional ``3+3'' design in the allocation of patients and selection of the maximum tolerated dose. The design based on a time-to-DLT model uses patients' DLT information over multiple treatment cycles in estimating the probability of DLT at the end of treatment cycle 1. Dose-escalation decisions are made whenever a cycle-1 DLT occurs, or two months after the previous check point. Compared to the design based on a logistic regression model, the new design shows more safety benefits for trials in which more late-onset toxicities are expected. As a trade-off, the new design requires more patients on average. The design based on a discrete-time multi-state (DTMS) model has three important attributes: (1) Toxicities are categorized over a distribution of severity levels, (2) Early toxicity may inform dose escalation, and (3) No suspension is required between accrual cohorts. The proposed model accounts for the difference in the importance of the toxicity severity levels and for transitions between toxicity levels. We compare the operating characteristics of the proposed design with those from a similar design based on a fully-evaluated model that directly models the maximum observed toxicity level within the patients' entire assessment window. We describe settings in which, under comparable power, the proposed design shortens the trial. The proposed design offers more benefit compared to the alternative design as patient accrual becomes slower.
Resumo:
Several approaches for the non-invasive MRI-based measurement of the aortic pressure waveform over the heart cycle have been proposed in the last years. These methods are normally based on time-resolved, two-dimensional phase-contrast sequences with uni-directionally encoded velocities (2D PC-MRI). In contrast, three-dimensional acquisitions with tridirectional velocity encoding (4D PC-MRI) have been shown to be a suitable data source for detailed investigations of blood flow and spatial blood pressure maps. In order to avoid additional MR acquisitions, it would be advantageous if the aortic pressure waveform could also be computed from this particular form of MRI. Therefore, we propose an approach for the computation of the aortic pressure waveform which can be completely performed using 4D PC-MRI. After the application of a segmentation algorithm, the approach automatically computes the aortic pressure waveform without any manual steps. We show that our method agrees well with catheter measurements in an experimental phantom setup and produces physiologically realistic results in three healthy volunteers.
Resumo:
For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks
Resumo:
PURPOSE To develop a method for computing and visualizing pressure differences derived from time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and to compare pressure difference maps of patients with unrepaired and repaired aortic coarctation to young healthy volunteers. METHODS 4D flow MRI data of four patients with aortic coarctation either before or after repair (mean age 17 years, age range 3-28, one female, three males) and four young healthy volunteers without history of cardiovascular disease (mean age 24 years, age range 20-27, one female, three males) was acquired using a 1.5-T clinical MR scanner. Image analysis was performed with in-house developed image processing software. Relative pressures were computed based on the Navier-Stokes equation. RESULTS A standardized method for intuitive visualization of pressure difference maps was developed and successfully applied to all included patients and volunteers. Young healthy volunteers exhibited smooth and regular distribution of relative pressures in the thoracic aorta at mid systole with very similar distribution in all analyzed volunteers. Patients demonstrated disturbed pressures compared to volunteers. Changes included a pressure drop at the aortic isthmus in all patients, increased relative pressures in the aortic arch in patients with residual narrowing after repair, and increased relative pressures in the descending aorta in a patient after patch aortoplasty. CONCLUSIONS Pressure difference maps derived from 4D flow MRI can depict alterations of spatial pressure distribution in patients with repaired and unrepaired aortic coarctation. The technique might allow identifying pathophysiological conditions underlying complications after aortic coarctation repair.
Resumo:
To assess spatial and temporal pressure characteristics in patients with repaired aortic coarctation compared to young healthy volunteers using time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and derived 4D pressure difference maps. After in vitro validation against invasive catheterization as gold standard, 4D flow MRI of the thoracic aorta was performed at 1.5T in 13 consecutive patients after aortic coarctation repair without recoarctation and 13 healthy volunteers. Using in-house developed processing software, 4D pressure difference maps were computed based on the Navier-Stokes equation. Pressure difference amplitudes, maximum slope of pressure amplitudes and spatial pressure range at mid systole were retrospectively measured by three readers, and twice by one reader to assess inter- and intraobserver agreement. In vitro, pressure differences derived from 4D flow MRI showed excellent agreement to invasive catheter measurements. In vivo, pressure difference amplitudes, maximum slope of pressure difference amplitudes and spatial pressure range at mid systole were significantly increased in patients compared to volunteers in the aortic arch, the proximal descending and the distal descending thoracic aorta (p < 0.05). Greatest differences occurred in the proximal descending aorta with values of the three parameters for patients versus volunteers being 19.7 ± 7.5 versus 10.0 ± 2.0 (p < 0.001), 10.9 ± 10.4 versus 1.9 ± 0.4 (p = 0.002), and 8.7 ± 6.3 versus 1.6 ± 0.9 (p < 0.001). Inter- and intraobserver agreements were excellent (p < 0.001). Noninvasive 4D pressure difference mapping derived from 4D flow MRI enables detection of altered intraluminal aortic pressures and showed significant spatial and temporal changes in patients with repaired aortic coarctation.
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.