951 resultados para Three-dimensional measuring
Resumo:
Impaction of permanent teeth represents a clinical challenge with regard to diagnosis, treatment plan, and prognosis. There is a close relationship between deciduous teeth and permanent teeth germ, and any injury in the deciduous dentition may influence the permanent teeth eruption. The extent of the damage caused to the permanent teeth germ depends on the patient age at the time of injury, type of trauma, severity, and direction of the impact. Conventional radiographic images are frequently used for diagnosis; however, recent developments in three-dimensional (3D) imaging systems have enabled dentistry to visualize structural changes effectively, with better contrast and more details, close to the reality. The cone-beam computed tomography (CBCT) has been used in the diagnosis and treatment plan of these impacted teeth. The purpose of the present case report is to describe a successful conservative management of a retained permanent maxillary lateral incisor with delayed root development after a trauma through the deciduous predecessor in a 9 year-old patient. After clinical and radiographic examination, a CBCT examination of the maxilla was requested to complement the diagnosis, providing an accurate 3D position of the retained tooth and its relationship to adjacent structures. The proposed treatment plan was the surgical exposure and orthodontic traction of the retained tooth. The lateral incisor spontaneously erupted after 6 months. Therefore, this case report suggests that permanent teeth with incomplete root formation have a great potential for spontaneous eruption because no tooth malposition or mechanical obstacles are observed.
Resumo:
Osny Ferreira-Junior, Luciana Dorigatti de Avila, Marcelo Bonifacio da Silva Sampieri, Eduardo Dias-Ribeiro, Weiliang Chen, Song Fan. Impacted Lower Third Molar Fused with a Supernumerary Tooth-Diagnosis and Treatment Planning Using Cone-Beam Computed Tomography. International Journal of Oral Science, 1(4): 224-228, 2009 This paper reported a case of fusion between an impacted third molar and a supernumerary tooth, in which a surgical intervention was carried out, with the objective of removing the dental elements. The panoramic radiography was complemented by the Donovan`s radiographic technique; but because of the proximity of the dental element to the mandibular ramus, it was not possible to have a final fusion diagnosis. Hence, the Cone-Beam Computed Tomography-which provides precise three-dimensional information-was used to determinate the fusion diagnosis and also to help in the surgical planning. In this case report we observed that the periapical, occlusal and panoramic were not able to show details which could only be examined through the cone-beam computed tomography.
Resumo:
Objective: This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Materials and methods: Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 mm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Results: Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. Conclusion: These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.
Resumo:
Study Design. A comparative study of cervical range of motion in asymptomatic persons and those with whiplash. Objectives. To compare the primary and conjunct ranges of motion of the cervical spine in asymptomatic persons and those with persistent whiplash-associated disorders, and to investigate the ability of these measures of range of motion to discriminate between the groups. Summary of Background. Evidence that range of motion is an effective indicator of physical impairment in the cervical spine is not conclusive. Few studies have evaluated the ability to discriminate between asymptomatic persons and those with whiplash on the basis of range of motion or compared three-dimensional in vivo measures of range of motion in asymptomatic persons and those with whiplash-associated disorders. Methods. The study participants were 89 asymptomatic volunteers (41 men, 48 women; mean age 39.2 years) and 114 patients with persistent whiplash-associated disorders (22 men, 93 women; mean age 37.2 years) referred to a whiplash research unit for assessment of their cervical region. Range of cervical motion was measured in three dimensions with a computerized, electromagnetic, motion-tracking device. The movements assessed were flexion, extension, left and right lateral flexion, and left and right rotation. Results. Range of motion was reduced in all primary movements in patients with persistent whiplash-associated disorder. Sagittal plane movements were proportionally the most affected. On the basis of primary and conjunct range of motion, age, and gender, 90.3% of study participants could be correctly categorized as asymptomatic or as having whiplash (sensitivity 86.2%, specificity 95.3%). Conclusions. Range of motion was capable of discriminating between asymptomatic persons and those with persistent whiplash-associated disorders.
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.
Resumo:
Solid-state C-13 NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-C-13]Gly3-[2-C-13]Ala4, [1-C-13]Gly3-[2-C-13]Leu6, [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-C-13]Gly3-[2-C-13]Ala4 and [1-C-13]Gly3-[2-C-13]Leu6 were consistent with alpha -helical structure in the N-terminus irrespective of environment. The Internuclear distances measured in [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees) than in lyophilized powder (121 degrees -139 degrees) or crystals (129 degrees). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (similar to 160 degrees) (R. Smith, F. Separovic, T. J. Milne, A. Whittaker, F. M. Bennett, B. A. Cornell, and A. Makriyannis, 1994, J. Mol, Biol 241:456-466). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.