990 resultados para Testing Procedure
Resumo:
This study attempted to manipulate self-presentational efficacy to examine the effect on social anxiety, social physique anxiety, drive for muscularity, and maximal strength performance during a one-repetition maximum (1-RM) chest press and leg press test. Ninety-nine college men with a minimum of six months of previous weight training experience were randomly assigned to complete a 1-RM protocol with either a muscular male trainer described as an expert or a lean male trainer described as a novice. Participants completed measures of self-presentation and body image prior to meeting their respective trainer, and following the completion of the 1-RM tests. Although the self-presentational efficacy manipulation was not successful, the trainers were perceived significantly differently on musculature and expertise. The group with the muscular, expert trainer reported higher social anxiety and attained higher 1-RM scores for the chest and leg press. Thus, trainer characteristics can affect strength performance and self-presentational concerns in this population.
Resumo:
Accelerated life testing (ALT) is widely used to obtain reliability information about a product within a limited time frame. The Cox s proportional hazards (PH) model is often utilized for reliability prediction. My master thesis research focuses on designing accelerated life testing experiments for reliability estimation. We consider multiple step-stress ALT plans with censoring. The optimal stress levels and times of changing the stress levels are investigated. We discuss the optimal designs under three optimality criteria. They are D-, A- and Q-optimal designs. We note that the classical designs are optimal only if the model assumed is correct. Due to the nature of prediction made from ALT experimental data, attained under the stress levels higher than the normal condition, extrapolation is encountered. In such case, the assumed model cannot be tested. Therefore, for possible imprecision in the assumed PH model, the method of construction for robust designs is also explored.
Resumo:
Rapport de stage (maîtrise en finance mathématique et computationnelle)
Resumo:
This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopted is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally, three applications to GARCH and realized volatility models are presented.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
This paper studies testing for a unit root for large n and T panels in which the cross-sectional units are correlated. To model this cross-sectional correlation, we assume that the data is generated by an unknown number of unobservable common factors. We propose unit root tests in this environment and derive their (Gaussian) asymptotic distribution under the null hypothesis of a unit root and local alternatives. We show that these tests have significant asymptotic power when the model has no incidental trends. However, when there are incidental trends in the model and it is necessary to remove heterogeneous deterministic components, we show that these tests have no power against the same local alternatives. Through Monte Carlo simulations, we provide evidence on the finite sample properties of these new tests.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Affiliation: Pierre Dagenais : Hôpital Maisonneuve-Rosemont, Faculté de médecine, Université de Montréal
Resumo:
UANL