999 resultados para Territorial models
Resumo:
Aim To evaluate the effects of using distinct alternative sets of climatic predictor variables on the performance, spatial predictions and future projections of species distribution models (SDMs) for rare plants in an arid environment. . Location Atacama and Peruvian Deserts, South America (18º30'S - 31º30'S, 0 - 3 000 m) Methods We modelled the present and future potential distributions of 13 species of Heliotropium sect. Cochranea, a plant group with a centre of diversity in the Atacama Desert. We developed and applied a sequential procedure, starting from climate monthly variables, to derive six alternative sets of climatic predictor variables. We used them to fit models with eight modelling techniques within an ensemble forecasting framework, and derived climate change projections for each of them. We evaluated the effects of using these alternative sets of predictor variables on performance, spatial predictions and projections of SDMs using Generalised Linear Mixed Models (GLMM). Results The use of distinct sets of climatic predictor variables did not have a significant effect on overall metrics of model performance, but had significant effects on present and future spatial predictions. Main conclusion Using different sets of climatic predictors can yield the same model fits but different spatial predictions of current and future species distributions. This represents a new form of uncertainty in model-based estimates of extinction risk that may need to be better acknowledged and quantified in future SDM studies.
Resumo:
The mode of action of nuclear receptors in living cells is an actively investigated field but much remains hypothetical due to the lack, until recently, of methods allowing the assessment of molecular mechanisms in vivo. However, these last years, the development of fluorescence microscopy methods has allowed initiating the dissection of the molecular mechanisms underlying gene regulation by nuclear receptors directly in living cells or organisms. Following our analyses on peroxisome proliferator activated receptors (PPARs) in living cells, we discuss here the different models arising from the use of these tools, that attempt to link mobility, DNA binding or chromatin interaction, and transcriptional activity.
Resumo:
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium.
Resumo:
Detailed large-scale information on mammal distribution has often been lacking, hindering conservation efforts. We used the information from the 2009 IUCN Red List of Threatened Species as a baseline for developing habitat suitability models for 5027 out of 5330 known terrestrial mammal species, based on their habitat relationships. We focused on the following environmental variables: land cover, elevation and hydrological features. Models were developed at 300 m resolution and limited to within species' known geographical ranges. A subset of the models was validated using points of known species occurrence. We conducted a global, fine-scale analysis of patterns of species richness. The richness of mammal species estimated by the overlap of their suitable habitat is on average one-third less than that estimated by the overlap of their geographical ranges. The highest absolute difference is found in tropical and subtropical regions in South America, Africa and Southeast Asia that are not covered by dense forest. The proportion of suitable habitat within mammal geographical ranges correlates with the IUCN Red List category to which they have been assigned, decreasing monotonically from Least Concern to Endangered. These results demonstrate the importance of fine-resolution distribution data for the development of global conservation strategies for mammals.
Resumo:
Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.
Resumo:
Aim To assess the geographical transferability of niche-based species distribution models fitted with two modelling techniques. Location Two distinct geographical study areas in Switzerland and Austria, in the subalpine and alpine belts. Methods Generalized linear and generalized additive models (GLM and GAM) with a binomial probability distribution and a logit link were fitted for 54 plant species, based on topoclimatic predictor variables. These models were then evaluated quantitatively and used for spatially explicit predictions within (internal evaluation and prediction) and between (external evaluation and prediction) the two regions. Comparisons of evaluations and spatial predictions between regions and models were conducted in order to test if species and methods meet the criteria of full transferability. By full transferability, we mean that: (1) the internal evaluation of models fitted in region A and B must be similar; (2) a model fitted in region A must at least retain a comparable external evaluation when projected into region B, and vice-versa; and (3) internal and external spatial predictions have to match within both regions. Results The measures of model fit are, on average, 24% higher for GAMs than for GLMs in both regions. However, the differences between internal and external evaluations (AUC coefficient) are also higher for GAMs than for GLMs (a difference of 30% for models fitted in Switzerland and 54% for models fitted in Austria). Transferability, as measured with the AUC evaluation, fails for 68% of the species in Switzerland and 55% in Austria for GLMs (respectively for 67% and 53% of the species for GAMs). For both GAMs and GLMs, the agreement between internal and external predictions is rather weak on average (Kulczynski's coefficient in the range 0.3-0.4), but varies widely among individual species. The dominant pattern is an asymmetrical transferability between the two study regions (a mean decrease of 20% for the AUC coefficient when the models are transferred from Switzerland and 13% when they are transferred from Austria). Main conclusions The large inter-specific variability observed among the 54 study species underlines the need to consider more than a few species to test properly the transferability of species distribution models. The pronounced asymmetry in transferability between the two study regions may be due to peculiarities of these regions, such as differences in the ranges of environmental predictors or the varied impact of land-use history, or to species-specific reasons like differential phenotypic plasticity, existence of ecotypes or varied dependence on biotic interactions that are not properly incorporated into niche-based models. The lower variation between internal and external evaluation of GLMs compared to GAMs further suggests that overfitting may reduce transferability. Overall, a limited geographical transferability calls for caution when projecting niche-based models for assessing the fate of species in future environments.
Resumo:
BACKGROUND: Thymic stromal lymphopoietin (TSLP) is a cytokine primarily produced by epithelial cells, which has been shown to be a potent inducer of T-helper 2 (Th2)-type responses. However, TSLP has pleiotropic effects upon immune cells, and although extensively studied in the context of atopic asthma, its relevance as a therapeutic target and its role in the pathogenesis of nonatopic asthma remains unknown. We sought to investigate the role of TSLP in atopic, nonatopic and viral-induced exacerbations of pulmonary inflammation. METHODS: Using stringently defined murine models of atopic, nonatopic and virally exacerbated forms of pulmonary inflammation, we compared inflammatory responses of C57BL/6 wild-type (WT) and TSLP receptor-deficient (TSLPR KO) mice. RESULTS: Thymic stromal lymphopoietin receptor (TSLPR) signaling was crucial for the development of atopic asthma. Specifically, TSLPR signaling to lung recruited CD4+ T cells enhanced eosinophilia, goblet cell hyperplasia, and overall inflammation within the airways. In contrast, the absence of TSLPR signaling was associated with strikingly exaggerated pulmonary neutrophilic inflammation in a nonatopic model of airway inflammation. The inflammation was associated with excessive levels of interleukin (IL)-17A in the lungs, indicating that TSLP negatively regulates IL-17A. In addition, in a model of influenza-induced exacerbation of atopic airway inflammation, the absence of TSLPR signaling also led to exaggerated neutrophilic inflammation. CONCLUSION: Thymic stromal lymphopoietin plays divergent roles in the pathogenesis of atopic and nonatopic asthma phenotypes by either enhancing Th2 responses or curtailing T-helper 17 responses. These findings raise important caveats for the design of therapeutic interventions targeting TSLP in asthma.
Resumo:
La estadística aplicada a la geografía ha experimentado un avance espectacular en las últimas dos décadas introduciéndose el espacio como eje fundamental del análisis. Este avance se ha visto acompañado por un rápido desarrollo de aplicaciones estadísticas integradas en los sistemas de información geográfica, constituyéndose de esta forma en un conjunto de herramientas imprescindibles en la planificación territorial. Por otro lado, en España, el incremento de población inmigrada en un corto intervalo de tiempo ha hecho necesario analizar su distribución espacial en las áreas urbanas. Los índices de autocorrelación espacial, tanto global como local, y su representación cartográfica constituyen una técnica adecuada para la detección de clusters y patrones espaciales y abre la posibilidad de plantear diferentes modelos econométricos. A partir del caso de la ciudad de Barcelona se aplican las técnicas descritas y se observan los diferentes comportamientos según el grupo de población estudiado.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
En tot cas, jo voldria que aquesta conferència fos això que he dit: una breu lliçó sobre la importància de les equacions diferencials. Parlaré d'elles des de el punt de vista del models, és a dir, dels fenòmens que modelitzeu. I intentaré explicar que malgrat el seu origen antic, totes elles segueixen presentant avui en dia problemes nous i interessants, tant des de el punt de vista teòric com pràctic.
Resumo:
This paper presents the results of the first phase of archaeological and historical study developed in the Vallès Oriental. It has done a complete study of the archaeological information available from the several documentary sources (bibliography, IPAC, etc.). This has lead to an interpretative update on the forms of occupation and settlement dynamics developed in the study area during the 5th BC to 1st century AD. Preliminary results of the archaeomorphological analysis focused primarily on the road network are also presented. The first results highlight the importance of territorial organization programs of the late 2nd BC and 1st century BC. In this sense, it has been documented a close relationship between the road network and the distribution of rural settlements in late-Republican and Augustan periods. The use of databases in the management of archaeological information, and especially the application of GIS in the analysis and interpretation of data, suggest new interpretive approaches.
Resumo:
En aquest article, s’hi presenta el procés d’elaboració, la metodologia, les reflexions i les conclusions del Llibre Blanc de l’Eurodistricte Català Transfronterer elaborat per la Mission Opérationnelle Transfrontalière (MOT) i la Universitat de Girona (UdG). L’estudi té per objectiu acompanyar la definició i l’emergència d’un projecte de territori transfronterer basat en la realitat d’un àmbit territorial compartit entre el departament dels Pirineus Orientals i les comarques de la província de Girona. El contingut del Llibre Blanc es divideix en tres parts: un diagnòstic transfronterer complet, l’anàlisi dels reptes d’aquest territori i les opcions de governança del territori transfronterer. Després de descriure el context territorial, la metodologia i les conclusions de l’estudi, s’hi fa un breu repàs de quin és l’estat del procés en l’actualitat
Resumo:
The present paper is aimed at providing a general strategic overview of the existing theoretical models that have applications in the field of financial innovation. Whereas most financialdevelopments have relied upon traditional economic tools, a new stream of research is defining a novel paradigm in which mathematical models from diverse scientific disciplines are being applied to conceptualize and explain economic and financial behavior. Indeed, terms such as ‘econophysics’ or ‘quantum finance’ have recently appeared to embrace efforts in this direction. As a first contact with such research, the project will present a brief description of some of the main theoretical models that have applications in finance and economics, and will try to present, if possible, potential new applications to particular areas in financial analysis, or new applicable models. As a result, emphasiswill be put on the implications of this research for the financial sector and its future dynamics.