989 resultados para Tauberian Constants
Resumo:
A novel method to study electron-transfer (ET) reactions between ferrocene in 1,2-dichloroethane (DCE) and a redox couple of K3Fe(CN)(6) and K4Fe(CN)(6) in water using scanning electrochemical microscopy (SECM) with a three-electrode setup is reported. In this work, a water droplet that adheres to the Surface of a platinum disk electrode is immersed in a DCE solution. The aqueous redox couple serves both as a reference electrode on the platinum disk and as an electron donor/acceptor at the polarized liquid/liquid inter-face. With the present experimental approach, the liquid/liquid interface can be polarized externally, while the electron-transfer reactions between the two phases can be monitored independently by SECM. The apparent heterogeneous rate constants for the ET reactions were obtained by fitting the experimental approach curves to the theoretical values. These rate constants obey the Butler-Volmer theory i.e., them, are found to be potential dependent.
Resumo:
The kinetic analysis of the interaction between tumor necrosis factor(TNF) and its monoclonal antibody was performed by surface plasmon resonance(SPR) technique. The monoclonal antibody was immobilized to the surface of CM5 sensor chip by amine coupling. TNF at different concentrations was injected across the mAb immobilized surface. The interaction was recorded in real time and could be seen on the sensorgram. One cycle, including association, dissociation and regeneration, lasted no more than 15 min. The interaction results was evaluated using 1 : 1 Langmuir binding model. The kinetic rate constants were calculated to be: k =1.68 X 10(3) L (.) mol(-1) (.) s(-1), k(d) = 1.73 X 10(-4) s(-1), and the affinity constants K-A = 9. 7 X 10(3) L (.) mol(-1), K-r)= 1. 03 X 10(-7) Mol (.) L-1. The X-2 was 3.47, which showed that the interaction is consistent with the 1 : I model. We can see from the results that although there are two binding sites in one mAb molecule, TNF reacts with each site in an independent and noncooperative manner.
Resumo:
In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.
Resumo:
Studies of the extraction kinetics of cerium(IV) from H2SO4-HF solutions with Cyanex 923 in n-heptane have been carried out using a constant interfacial area cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The results were compared with those of the system without HF. It was concluded that the addition of HF reduces the activation energy for the forward rate from 46.2 to 36.5 U mol(-1) while it has an opposite effect on the activation energy for the reverse process(the activation energy increased from 23.3 to 90.8 U mol(-1)). Thus, HF can accelerate the rate of cerium(IV) extraction. At the same time, the extraction rate is controlled by a mixed chemical reaction-diffusion rather than by a chemical reaction alone. A rate equation has also been obtained.
Resumo:
Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new extractant 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HHEOIPP or HA) in heptane was employed to extract rare earths from hydrochloric acid medium. The dependence of extraction distribution ratio on equilibrium aqueous pH and the concentration of extractant were investigated. On the basis of slope analysis,it was proposed that two different kinds of extracted species were formed. For rare earth elements (La similar to Ho) the extracted species was LnA(3)(HA)(3) and for heavy rare earth elements (Er similar to Lu) the species was LnClA(2)(HA)(3). The steric hindrance plays an important role in forming the species. The extraction constants and separation factors of the adjacent rare earths were calculated too. Compared with HDEHP and HEH/EHP, HHEOIPP is a valuable extractant with high separation selectivity. The "tetrad effect" between K-ex and atomic number was observed.
Resumo:
The method of the kinetics separation of copper and palladium by sodium hydroxide precipitation was described. The reaction orders, apparent rate constants, apparent activation energy of the reactions between sodium hydroxide and copper, and palladium were determined, and the introduced error for the determination of palladium with separating copper and-palladium by sodium hydroxide precipitation was calculated, The proposed method has been applied to determine palladium in the aldehyde catalyst with good result.
Resumo:
An amperometric biosensor for monitoring phenols in the organic phase was constructed by the silica sol-gel immobilization of tyrosinase on a glassy carbon electrode. The organic-inorganic hybrid materials with different sol-gel precursors and polymers were optimized, and the experimental conditions, such as the effect of the solvent, operational potential and enzyme loading were explored for the optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 18 s, and the trend in the sensitivity of different phenols is as follows: catechol > phenol >p-cresol. In addition, the apparent Michaelis-Menten constants (K-m(app)) and the stability of the enzyme electrode were discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Three selenium-containing catalytic antibodies mHB4, mHB5 and mHB7 which acted as mimics of cytosolic glutathione peroxidase(cGPX), were prepared by chemically introducing selenium into monoclonal antibodies HB4, HB5 and HB7. HB4. HB5 and HB7 were raised against a GSH derivative GSH-S-DNP dibenzyl ester, The cGPX activity of mHB4, mHB5, mHB7 were 170, 1 867, 32 U/mu mol, respectively. The cGPX activity of mHB5 was 0, 32 fold of natural rabbit liver cGPX and 1. 51 fold of m4A4. About two atoms of selenium existed in each of mHB5 molecule determined by inductively-coupled plasma/mass spectroscopy (ICP-MS), The optimal activity of mHB5 was at between pH 8. 4 and 8, 8, The reaction catalyzed by mHB5 involved a Ping-Pong mechanism. At pH 7. 0 and 37 degreesC, the apparent second-order rate constants for reaction of mHB5 with H2O2 and t-ROOH were as followed: k(+1) (H2O2) = 9. 71 x 10(6) L/(mol min), k(+1)(t-ROOH) = 5. 99 x 10(5) L/(mol.min). Rate accelerations (k(cat)/K-m/k(uncat)) 9. 8 x 10(6) and 3.7 x 10(5) fold those of the uncatalytic reaction were observed.
Resumo:
A sol-gel approach has been developed to prepare polyimide-TiO2, hybrid films fi om soluble polyimides and a modified titanium precursor. The rate of the hydrolysis reaction of titanium alkoxide can be controlled by using acetic acid as a modifier. FTIR and XPS indicated that TiO2, particles were well distributed in polyimide matrixes with particle size small per than 60 nm. Polyimide hybrid films having the TiO2, component less than or equal to 10% exhibited high thermal stability, high optical transparency and good mechanical properties and possessed higher dielectric constants than correspondingly polyimides. (C) 2000 Society of Chemical Industry.
Resumo:
Rare earth(III)-histidine (His)- tryptophane (Trp). Ca(II)-His-Trp and Zn(II)-His-Trp systems were studied by potentiometric titration and computer simulation under physiological conditions. The species of the systems and their stability constants were determined. The distributions of species of rare earth(III), Ca(II) and Zn(II) were discussed.
Resumo:
Electrocatalytic reduction of O-2 and H2O2 at the glass carbon electrode modified with microperoxidase-11 immobilized with Nafion film has been studied by means of cyclic voltammetry and rotating disk electrode techniques. The modified electrode shows high catalytic activity toward the reduction of both O-2 and H2O2. The rate constants of Oz and H2O2 reduction at the modified electrode have been measured and compared. It is found that O-2 undergoes a four-electron reduction at the modified electrode and the catalytic activity for the reduction of O-2 is dependent on the pH of the solutions.
Resumo:
Ce4+ extraction rate from aqueous sulphate solutions by Cyanex923 in heptane was studied using a constant interfacial cell with laminar flow at 30 degreesC. The experimental hydrodynamic conditions were chosen and the contribution of diffusion to the measured rate of reaction was minimized. Cerium extraction rate was measured at different chemical composition by varying the concentrations of hydrogen ion, sulphate and Cyanex923. A cerium-Cyanex923(B) extractive is formed at the interface. The data were analyszed in terms of pseudo-first order constants and a reaction mechanism was developed.
Resumo:
Facilitated proton transfer across the water/1,2-dichloroethane (DCE) interface supported on the tips of micro- and nano-pipets by o-phenanthroline (Phen) was studied by using cyclic voltammetry. The formed micro- and nano-liquid/liquid interfaces functioned as micro- and nano-electrodes under certain experimental conditions. The dependence of the half-wave potentials on the aqueous solutions acidities was studied and the ratio of association constants between Phen and proton in the aqueous and DCE phases was calculated by the method proposed by Matsuda et al.. The standard rate constant (k(0)) and the transfer coefficient (alpha) evaluated by using nano-pipets were equal to 0.183 +/- 0.054 cm/s and 0.70 +/- 0.09, respectively.
Resumo:
The elucidation of key influence factors for electrostatic adsorption is very important to control protein nonspecific adsorption on modified surfaces. In this study, real-time surface plasmon resonance technique is used to characterize the electrostatic adsorption of two proteins (mouse IgG and protein A) on carboxymethyldextran-modified surface. The results show that protein solution pH and ionic strength are key influence factors for efficient electrostatic adsorption. The influence of protein, solution pH on the amount of electrostatic adsorption depends on the type of the charge and the charge density of both protein and modified matrix on the surface. The electrostatic adsorption process involves a competition between the positively charged protein and other positively charged species in the buffer solution. A decrease of ionic strength leads to an increasing electrostatic adsorption. The kinetic adsorption constants of protein A at different pH values were also calculated and compared.