960 resultados para TRANSVERSE AND YAW MOTIONS
Resumo:
Soft tissue damage has been observed in hip joints with pathological geometries. Our primary goal was to study the relationship between morphological variations of the bony components of the hip and resultant stresses within the soft tissues of the joint during routine daily activities. The secondary goal was to find the range of morphological parameters in which stresses are minimized. Computational models of normal and pathological joints were developed based on variations of morphological parameters of the femoral head (Alpha angle) and acetabulum (CE angle). The Alpha angle was varied between 40 degrees (normal joint) and 80 degrees (cam joint). The CE angle was varied between 0 degrees (dysplastic joint) and 40 degrees (pincer joint). Dynamic loads and motions for walking and standing to sitting were applied to all joint configurations. Contact pressures and stresses were calculated and crosscompared to evaluate the influence of morphology. The stresses in the soft tissues depended strongly on the head and acetabular geometry. For the dysplastic joint, walking produced high acetabular rim stresses. Conversely, for impinging joints, standing-to-sitting activities that involved extensive motion were critical, inducing excessive distortion and shearing of the tissue-bone interface. Zones with high von Mises stresses corresponded with clinically observed damage zones in the acetabular cartilage and labrum. Hip joint morphological parameters that minimized were 20 degrees
Resumo:
A comparison between an unconstrained and a partially constrained system for in vitro biomechanical testing of the L5-S1 spinal unit was conducted. The objective was to compare the compliance and the coupling of the L5-S1 unit measured with an unconstrained and a partially constrained test for the three major physiological motions of the human spine. Very few studies have compared unconstrained and partially constrained testing systems using the same cadaveric functional spinal units (FSUs). Seven human L5-S1 units were therefore tested on both a pneumatic, unconstrained, and a servohydraulic, partially constrained system. Each FSU was tested along three motions: flexion-extension (FE), lateral bending (LB) and axial rotation (AR). The obtained kinematics on both systems is not equivalent, except for the FE case, where both motions are similar. The directions of coupled motions were similar for both tests, but their magnitudes were smaller in the partially constrained configuration. The use of a partially constrained system to characterize LB and AR of the lumbosacral FSU decreased significantly the measured stiffness of the segment. The unconstrained system is today's "gold standard" for the characterization of FSUs. The selected partially constrained method seems also to be an appropriate way to characterize FSUs for specific applications. Care should be taken using the latter method when the coupled motions are important.
Resumo:
In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.
Resumo:
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.
Resumo:
In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward–rightward) motion. Gymnasts showed lower thresholds for the linear leftward–rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14–20 years) than for the younger (7–13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.
Resumo:
We obtain the next-to-next-to-leading order corrections to transverse-momentum spectra of W, Z and Higgs bosons near the partonic threshold. In the threshold limit, the electroweak boson recoils against a low-mass jet and all radiation is either soft, or collinear to the jet or the beam directions. We extract the virtual corrections from known results for the relevant two-loop four-point amplitudes and combine them with the soft and collinear two-loop functions as defined in Soft-Collinear Effective Theory. We have implemented these results in a public code PeTeR and present numerical results for the threshold resummed cross section of W and Z bosons at next-to-next-to-next-to-leading logarithmic accuracy, matched to next-to-leading fixed-order perturbation theory. The two-loop corrections lead to a moderate increase in the cross section and reduce the scale uncertainty by about a factor of two. The corrections are significantly larger for Higgs production.
Resumo:
Using methods from effective field theory, we have recently developed a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio m V /q T are resummed to all orders. This formalism is applied to the production of Higgs bosons in gluon fusion at the LHC. The production cross section receives logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q∗~mHe−const/αs(mH)≈8 GeV, which protects the process from receiving large long-distance hadronic contributions. We present numerical predictions for the transverse-momentum spectrum of Higgs bosons produced at the LHC, finding that it is quite insensitive to hadronic effects.
Electroweak gauge-boson and Higgs production at Small qT: Infrared safety from the collinear anomaly
Resumo:
We discuss the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse momentum q_T. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale q^∗, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.
Resumo:
PURPOSE Fixation of periprosthetic hip fractures with intracortical anchorage might not be feasible in cases with bulky implants and/or poor bone stock. METHODS Rotational stability of new plate inserts with extracortical anchorage for cerclage fixation was measured and compared to the stability found using a standard technique in a biomechanical setup using a torsion testing machine. In a synthetic PUR bone model, transverse fractures were fixed distally using screws and proximally by wire cerclages attached to the plates using "new" (extracortical anchorage) or "standard" (intracortical anchorage) plate inserts. Time to fracture consolidation and complications were assessed in a consecutive series of 18 patients (18 female; mean age 81 years, range 55-92) with periprosthetic hip fractures (ten type B1, eight type C-Vancouver) treated with the new device between July 2003 and July 2010. RESULTS The "new" device showed a higher rotational stability than the "standard" technique (p < 0.001). Fractures showed radiographic consolidation after 14 ± 5 weeks (mean ± SD) postoperatively in patients. Revision surgery was necessary in four patients, unrelated to the new technique. CONCLUSION In periprosthetic hip fractures in which fixation with intracortical anchorage using conventional means might be difficult due to bulky revision stems and/or poor bone stock, the new device may be an addition to the range of existing implants.
Resumo:
East Antarctic ice discharged by Byrd Glacier continues as a flowband to the calving front of the Ross Ice Shelf. Flow across the grounding line changes from compressive to extensive as it leaves the fjord through the Transantarctic Mountains occupied by Byrd Glacier. Magnitudes of the longitudinal compressive stress that suppress opening of transverse tensile cracks are calculated for the flowband. As compressive back stresses diminish, initial depths and subsequent growth of these cracks, and their spacing, are calculated using theories of elastic and ductile fracture mechanics. Cracks are initially about one millimeter wide, with approximately 30 in depths and 20 in spacings for a back stress of 83 kPa at a distance of 50 kin beyond the fjord, where floating ice is 600 in thick. When these crevasses penetrate the whole ice thickness, they release tabular icebergs 20 kin to 100 kin wide, spaced parallel to the calving front of the Ross Ice Shelf
Resumo:
Repeat airborne laser altimeter measurements are used to derive surface elevation changes on parts of Whillans Ice Stream and Ice Stream C, West Antarctica. Elevation changes are converted to estimates of ice equivalent thickness change using local accumulation rates, surface snow densities and vertical bedrock motions. The surveyed portions of two major tributaries of Whillans Ice Stream are found to be thinning almost uniformly at an average rate of similar to 1 m a(-1). Ice Stream C has a complicated elevation-change pattern, but is generally thickening. These results are used to estimate the contribution of each surveyed region to the current rate of global sea-level rise.
Resumo:
The International GNSS Service (IGS) provides operational products for the GPS and GLONASS constellation. Homogeneously processed time series of parameters from the IGS are only available for GPS. Reprocessed GLONASS series are provided only by individual Analysis Centers (i. e. CODE and ESA), making it difficult to fully include the GLONASS system into a rigorous GNSS analysis. In view of the increasing number of active GLONASS satellites and a steadily growing number of GPS+GLONASS-tracking stations available over the past few years, Technische Universität Dresden, Technische Universität München, Universität Bern and Eidgenössische Technische Hochschule Zürich performed a combined reprocessing of GPS and GLONASS observations. Also, SLR observations to GPS and GLONASS are included in this reprocessing effort. Here, we show only SLR results from a GNSS orbit validation. In total, 18 years of data (1994–2011) have been processed from altogether 340 GNSS and 70 SLR stations. The use of GLONASS observations in addition to GPS has no impact on the estimated linear terrestrial reference frame parameters. However, daily station positions show an RMS reduction of 0.3 mm on average for the height component when additional GLONASS observations can be used for the time series determination. Analyzing satellite orbit overlaps, the rigorous combination of GPS and GLONASS neither improves nor degrades the GPS orbit precision. For GLONASS, however, the quality of the microwave-derived GLONASS orbits improves due to the combination. These findings are confirmed using independent SLR observations for a GNSS orbit validation. In comparison to previous studies, mean SLR biases for satellites GPS-35 and GPS-36 could be reduced in magnitude from −35 and −38 mm to −12 and −13 mm, respectively. Our results show that remaining SLR biases depend on the satellite type and the use of coated or uncoated retro-reflectors. For Earth rotation parameters, the increasing number of GLONASS satellites and tracking stations over the past few years leads to differences between GPS-only and GPS+GLONASS combined solutions which are most pronounced in the pole rate estimates with maximum 0.2 mas/day in magnitude. At the same time, the difference between GLONASS-only and combined solutions decreases. Derived GNSS orbits are used to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper. Phase observation residuals from a precise point positioning are at the level of 2 mm and particularly reveal poorly modeled yaw maneuver periods.
Resumo:
The aim of this study was to develop a GST-based methodology for accurately measuring the degree of transverse isotropy in trabecular bone. Using femoral sub-regions scanned in high-resolution peripheral QCT (HR-pQCT) and clinical-level-resolution QCT, trabecular orientation was evaluated using the mean intercept length (MIL) and the gradient structure tensor (GST) on the HR-pQCT and QCT data, respectively. The influence of local degree of transverse isotropy (DTI) and bone mineral density (BMD) was incorporated into the investigation. In addition, a power based model was derived, rendering a 1:1 relationship between GST and MIL eigenvalues. A specific DTI threshold (DTI thres) was found for each investigated size of region of interest (ROI), above which the estimate of major trabecular direction of the GST deviated no more than 30° from the gold standard MIL in 95% of the remaining ROIs (mean error: 16°). An inverse relationship between ROI size and DTI thres was found for discrete ranges of BMD. A novel methodology has been developed, where transversal isotropic measures of trabecular bone can be obtained from clinical QCT images for a given ROI size, DTI thres and power coefficient. Including DTI may improve future clinical QCT finite-element predictions of bone strength and diagnoses of bone disease.
Resumo:
The medial arterial supply to 68 of the 72 coxofemoral joints of 36 medium to large breed dogs was examined ultrasonographically. The medial circumflex femoral artery and three branches were identified; the artery and its transverse branch were identified in all 68 joints, and the deep branch was identified in 61 joints, and the ascending branch was identified in 63. However, the acetabular and obturator branches were not identified. The pulsatility index, the mean velocity and the peak systolic velocity of the medial circumflex femoral artery were determined and associated with a radiographic score of degenerative coxofemoral joint disease and a lath distraction index (LDI). In joints with a LDI greater than 0.35, the pulsatility index was significantly lower (P=0.023) and its mean velocity was higher (P=0.005). However, no significant associations were observed in individual dogs when the measurements in both joints were taken into account.
Resumo:
A measurement of angular correlations in Drell-Yan lepton pairs via the phi(eta)* observable is presented. This variable probes the same physics as the Z/gamma* boson transverse momentum with a better experimental resolution. The Z/gamma* -> e(+)e(-) and Z/gamma* -> mu(+)mu(-) decays produced in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb(-1). Normalised differential cross sections as a function of phi(eta)* are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of phi(eta)* for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations or by some Monte Carlo event generators. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.