1000 resultados para TFP Diversity
Resumo:
Questions: How is succession on ex-arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex-arable land, with five blocks, each containing three 10 m x 10 m experiment tal plots: natural colonization, a low- (four species) and high-diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its 'insurance effect': the high diversity mixtures were always able to compensate for the failure of some species.
Resumo:
Weeds are major constraints on crop production, yet as part of the primary producers within farming systems, they may be important components of the agroecosystem. Using published literature, the role of weeds in arable systems for other above-ground trophic levels are examined. In the UK, there is evidence that weed flora have changed over the past century, with some species declining in abundance, whereas others have increased. There is also some evidence for a decline in the size of arable weed seedbanks. Some of these changes reflect improved agricultural efficiency, changes to more winter-sown crops in arable rotations and the use of more broad-spectrum herbicide combinations. Interrogation of a database of records of phytophagous insects associated with plant species in the UK reveals that many arable weed species support a high diversity of insect species. Reductions in abundances of host plants may affect associated insects and other taxa. A number of insect groups and farmland birds have shown marked population declines over the past 30 years. Correlational studies indicate that many of these declines are associated with changes in agricultural practices. Certainly reductions in food availability in winter and for nestling birds in spring are implicated in the declines of several bird species, notably the grey partridge, Perdix perdix . Thus weeds have a role within agroecosystems in supporting biodiversity more generally. An understanding of weed competitivity and the importance of weeds for insects and birds may allow the identification of the most important weed species. This may form the first step in balancing the needs for weed control with the requirements for biodiversity and more sustainable production methods.
Resumo:
Globally, plant-pollinator communities are subject to a diverse array of perturbations and in many temperate and semi-arid systems fire is a dominant structuring force. We present a novel and highly integrated approach, which quantifies, in parallel, the response to fire of pollinator communities, floral communities and floral reward structure. Mt Carmel, Israel is a recognised bee-flower biodiversity hotspot, and using a chronosequence of habitats with differing post-fire ages, we follow the changes in plant-pollinator community organisation from immediately following a burn until full regeneration of vegetation. Initially, fire has a catastrophic effect on these communities, however, recovery is rapid with a peak in diversity of both flowers and bees in the first 2 years post-fire, followed by a steady decline over the next 50 years. The regeneration of floral communities is closely matched by that of their principal pollinators. At the community level we quantify, per unit area of habitat, key parameters of nectar and pollen forage known to be of importance in structuring pollinator communities. Nectar Volume, nectar water content, nectar concentration and the diversity of nectar foraging niches are all greatest immediately following fire with a steady decrease as regeneration proceeds. Temporal changes in energy availability for nectar, pollen, total energy (nectar + pollen) and relative importance of pollen to nectar energy show a similar general decline with site age, however, the pattern is less clear owing to the highly patchy distribution of floral resources. Changes in floral reward structure reflect the general shift from annuals (generally low-reward open access flowers) to perennials (mostly high-reward and restricted access flowers) as post-fire regeneration ensues. The impact of fire on floral communities and their associated rewards have clear implications for pollinator community structure and we discuss this and the role of other disturbance factors on these systems.
Resumo:
Communities of nectar-producing plants show high spatio-temporal variation in the patterns of volume and concentration presentation. We illustrate a novel approach for quantifying nectar reward structures in complex communities, demonstrating that nectar resource diversity (defined as the variety of nectar volume-concentration combinations available) may be a fundamental factor organising nectarivore communities. In a series of diverse bee and entomophilous flower communities in Israel, our measure of nectar resource diversity alone explains the majority of variation in bee species richness, while other nectar variables (volume, concentration, energy value, and water content) have little predictive value per se. The new measure of nectar resource diversity is highly correlated with floral species richness and particularly with the species richness of annuals, yet it is additive in its effect on bee diversity. We conclude that relying solely upon measurements of mean nectar volume and mean nectar concentration overlooks a key characteristic of community-level reward structure, nectar resource diversity, so that previous studies may have failed to identify an important determinant of flower-visitor community structure.
Resumo:
A questionnaire survey of 408 households explored the role of socio-economic and cultural factors in rice (Oryza sativa L.) varietal diversity management on-farm in two contrasting eco-sites in Nepal. Multiple regression outputs suggest that number of parcels of land, livestock number, number of rice ecosystems, agro-ecology (altitude), and use of chemical fertilizer have a significant positive influence on landrace diversity on-farm, while membership in farmers' groups linked to extension services has significant but negative influence on landrace diversity. Factors with significant positive influence on diversity of modern varieties on-farm were number of parcels of land and of rice ecosystems, access to irrigation, membership in farmers' groups, and use of insecticide. Within communities, resource-endowed households maintain significantly higher varietal diversity on-farm than resource-poor households and play a significant role in conserving landraces that are vulnerable to genetic erosion and those with socio-cultural and market-preferred traits. Resource-poor households also contribute to local diversity conservation but at lower richness and area coverage levels than resource-endowed households. Households where a female had assumed the role of head of household due to death or migrant work of her husband had less diversity due to lower labor availability. Landraces with socio-cultural and market-preferred traits are few in number but have potential to be conserved on-farm.
Resumo:
Cedrus atlantica (Pinaceae) is a large and exceptionally long-lived conifer native to the Rif and Atlas Mountains of North Africa. To assess levels and patterns of genetic diversity of this species. samples were obtained throughout the natural range in Morocco and from a forest plantation in Arbucies, Girona (Spain) and analyzed using RAPD markers. Within-population genetic diversity was high and comparable to that revealed by isozymes. Managed populations harbored levels of genetic variation similar to those found in their natural counterparts. Genotypic analyses Of Molecular variance (AMOVA) found that most variation was within populations. but significant differentiation was also found between populations. particularly in Morocco. Bayesian estimates of F,, corroborated the AMOVA partitioning and provided evidence for Population differentiation in C. atlantica. Both distance- and Bayesian-based Clustering methods revealed that Moroccan populations comprise two genetically distinct groups. Within each group, estimates of population differentiation were close to those previously reported in other gymnosperms. These results are interpreted in the context of the postglacial history of the species and human impact. The high degree of among-group differentiation recorded here highlights the need for additional conservation measures for some Moroccan Populations of C. atlantica.
Resumo:
R. H. Whittaker's idea that plant diversity can be divided into a hierarchy of spatial components from alpha at the within-habitat scale through beta for the turnover of species between habitats to gamma along regional gradients implies the underlying existence of alpha, beta, and gamma niches. We explore the hypothesis that the evolution of a, (3, and gamma niches is also hierarchical, with traits that define the a niche being labile, while those defining a and 7 niches are conservative. At the a level we find support for the hypothesis in the lack of close significant phylogenetic relationship between meadow species that have similar a niches. In a second test, a niche overlap based on a variety of traits is compared between congeners and noncongeners in several communities; here, too, there is no evidence of a correlation between a niche and phylogeny. To test whether beta and gamma niches evolve conservatively, we reconstructed the evolution of relevant traits on evolutionary trees for 14 different clades. Tests against null models revealed a number of instances, including some in island radiations, in which habitat (beta niche) and elevational maximum (an aspect of the gamma niche) showed evolutionary conservatism.
Resumo:
Genealogical data have been used very widely to construct indices with which to examine the contribution of plant breeding programmes to the maintenance and enhancement of genetic resources. In this paper we use such indices to examine changes in the genetic diversity of the winter wheat crop in England and Wales between 1923 and 1995. We find that, except for one period characterized by the dominance of imported varieties, the genetic diversity of the winter wheat crop has been remarkably stable. This agrees with many studies of plant breeding programmes elsewhere. However, underlying the stability of the winter wheat crop is accelerating varietal turnover without any significant diversification of the genetic resources used. Moreover, the changes we observe are more directly attributable to changes in the varietal shares of the area under winter wheat than to the genealogical relationship between the varieties sown. We argue, therefore, that while genealogical indices reflect how well plant breeders have retained and exploited the resources with which they started, these indices suffer from a critical limitation. They do not reflect the proportion of the available range of genetic resources which has been effectively utilized in the breeding programme: complex crosses of a given set of varieties can yield high indices, and yet disguise the loss (or non-utilization) of a large proportion of the available genetic diversity.
Resumo:
Bee pollinators are currently recorded with many different sampling methods. However, the relative performances of these methods have not been systematically evaluated and compared. In response to the strong need to record ongoing shifts in pollinator diversity and abundance, global and regional pollinator initiatives must adopt standardized sampling protocols when developing large-scale and long-term monitoring schemes. We systematically evaluated the performance of six sampling methods (observation plots, pan traps, standardized and variable transect walks, trap nests with reed internodes or paper tubes) that are commonly used across a wide range of geographical regions in Europe and in two habitat types (agricultural and seminatural). We focused on bees since they represent the most important pollinator group worldwide. Several characteristics of the methods were considered in order to evaluate their performance in assessing bee diversity: sample coverage, observed species richness, species richness estimators, collector biases (identified by subunit-based rarefaction curves), species composition of the samples, and the indication of overall bee species richness (estimated from combined total samples). The most efficient method in all geographical regions, in both the agricultural and seminatural habitats, was the pan trap method. It had the highest sample coverage, collected the highest number of species, showed negligible collector bias, detected similar species as the transect methods, and was the best indicator of overall bee species richness. The transect methods were also relatively efficient, but they had a significant collector bias. The observation plots showed poor performance. As trap nests are restricted to cavity-nesting bee species, they had a naturally low sample coverage. However, both trap nest types detected additional species that were not recorded by any of the other methods. For large-scale and long-term monitoring schemes with surveyors with different experience levels, we recommend pan traps as the most efficient, unbiased, and cost-effective method for sampling bee diversity. Trap nests with reed internodes could be used as a complementary sampling method to maximize the numbers of collected species. Transect walks are the principal method for detailed studies focusing on plant-pollinator associations. Moreover, they can be used in monitoring schemes after training the surveyors to standardize their collection skills.
Resumo:
Declining biodiversity in agro-ecosystems, caused by intensification of production or expansion of monocultures, is associated with the emergence of agricultural pests. Understanding how land-use and management control crop-associated biodiversity is, therefore, one of the key steps towards the prediction and maintenance of natural pest-control. Here we report on relationships between land-use variables and arthropod community attributes (for example, species diversity, abundance and guild structure) across a diversification gradient in a rice-dominated landscape in the Mekong delta, Vietnam. We show that rice habitats contained the most diverse arthropod communities, compared with other uncultivated and cultivated land-use types. In addition, arthropod species density and Simpson's diversity in flower, vegetable and fruit habitats was positively related to rice cover in the local landscape. However, across the landscape as a whole, reduction in heterogeneity and the amount of uncultivated cover was associated, generally, with a loss of diversity. Furthermore, arthropod species density in tillering and flowering stages of rice was positively related to crop and vegetation richness, respectively, in the local landscape. Differential effects on feeding guilds were also observed in rice-associated communities with the proportional abundance of predators increasing and the proportional abundance of detritivores decreasing with increased landscape rice cover. Thus, we identify a range of rather complex, sometimes contradictory patterns concerning the impact of rice cover and landscape heterogeneity on arthropod community attributes. Importantly, we conclude that that land-use change associated with expansion of monoculture rice need not automatically impact diversity and functioning of the arthropod community.
Resumo:
1. Determining the functional significance of species diversity in natural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity. 2. This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia. 3. Glasshouse experiments were undertaken in which four life stages of a planthopper (Nilaparvata lugens) and a moth (Marasmia patnalis) were caged with single or three-species combinations of generalist predators. 4. Generally, predation rates of the three-species assemblages exceeded expectation when attacking M. patnalis, but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens. 5. The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional complementarity among predator species. This indicates that emergent species diversity effects in natural enemy assemblages are context dependent; they depend not only on the characteristics of the predators species, but on the identity of the species on which they prey.
Resumo:
1. Declining populations of UK grassland flora and fauna have been attributed to intensification of agricultural management practices, including changes in cutting, fertilizer, grazing and drainage regimes. We aimed to develop field margin management practices that could reverse declines in intensively managed grassland biodiversity that would have application in the UK and Europe. Here we focus on one aspect of grassland biodiversity, the beetles. 2. In four intensively managed livestock farms in south-west England, 10-m wide field margins in existing grasslands were managed to create seven treatments of increasing sward architectural complexity. This was achieved through combinations of inorganic (NPK) fertilizer, cattle grazing, and timing and height of cutting. To examine the potential influence of complexity on faunal diversity, beetles were identified to species level from suction samples taken between 2003 and 2005, and their assemblage structure was related to margin management, floral assemblages and sward architecture. 3. Beetle abundance, and species richness and evenness were influenced by margin management treatment and its interaction with year. Correlations with sward architecture and the percentage cover of dominant forbs and grasses were also found. Functional groups of the beetles showed different responses to the management treatments. In particular, higher proportional abundances of seed/flower-feeding guilds were found in treatments not receiving NPK fertilizer. 4. The assemblage structure was shown to respond to margin management treatments, sward architecture and the percentage cover of dominant forbs and grasses. The most extensively managed treatments were characterized by distinct successional trajectories from the control treatment. 5. Synthesis and applications. This study provides management options suitable for use within agri-environment schemes intended to improve faunal diversity associated with intensively managed lowland grasslands. Field margins receiving either no management or a single July silage cut were shown to support greater abundances and species richness of beetles, although subtler modifications of conventional management may also be beneficial, for example the absence of NPK fertilizer while maintaining grazing and silage cutting systems.
Resumo:
The endemic pink pigeon has recovered from less than 20 birds in the mid-1970s to 355 free-living individuals in 2003. A major concern for the species' recovery has been the potential genetic problem of inbreeding. Captive pink pigeons bred for reintroduction were managed to maximise founder representation and minimise inbreeding. In this paper, we quantify the effect of inbreeding on survival and reproductive parameters in captive and wild populations and quantify DNA sequence variation in the mitochondrial d-loop region for pink pigeon founders. Inbreeding affected egg fertility, squab, juvenile and adult survival, but effects were strongest in highly inbred birds (F≥0.25). Inbreeding depression was more apparent in free-living birds where even moderate levels of inbreeding affected survival, although highly inbred birds were equally compromised in both captive and wild populations. Mitochondrial DNA haplotypic diversity in pink pigeon founders is low, suggesting that background inbreeding is contributing to low fertility and depressed productivity in this species, as well as comparable survival of some groups of non-inbred and nominally inbred birds. Management of wild populations has boosted population growth and may be required long-term to offset the negative effects of inbreeding depression and enhance the species' survival.