976 resultados para TECTA PROTEIN, HUMAN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying rare, highly penetrant risk mutations may be an important step in dissecting the molecular etiology of schizophrenia. We conducted a gene-based analysis of large (>100kb), rare copy number variants (CNVs) in the Wellcome Trust Case Control Consortium 2 (WTCCC2) schizophrenia sample of 1,564 cases and 1,748 controls all from Ireland, and further extended the analysis to include an additional 5,196 UK controls. We found association with duplications at chr20p12.2 (P=0.007) and evidence of replication in large independent European schizophrenia (P=0.052) and UK bipolar disorder case-control cohorts (P=0.047). A combined analysis of Irish/UK subjects including additional psychosis cases (schizophrenia and bipolar disorder) identified 22 carriers in 11,707 cases and 10 carriers in 21,204 controls (meta-analysis CMH P value=2x10(-4) (odds ratio (OR)=11.3, 95% CI=3.7, ∞)). Nineteen of the 22 cases and 8 of the 10 controls carried duplications starting at 9.68Mb with similar breakpoints across samples. By haplotype analysis and sequencing we identified a tandem ∼149kb duplication overlapping the gene p21 Protein-Activated Kinase 7 (PAK7, also called PAK5) which was in linkage disequilibrium with local haplotypes (P=2.5x10(-21)), indicative of a single ancestral duplication event. We confirmed the breakpoints in 8/8 carriers tested and found co-segregation of the duplication with illness in two additional family members of one of the affected probands. We demonstrate that PAK7 is developmentally co-expressed with another known psychosis risk gene (DISC1) suggesting a potential molecular mechanism involving aberrant synapse development and plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently it has been shown that levels of circulating oxidized LDL immune complexes (ox-LDL-IC) predict the development of diabetic retinopathy (DR). This study aimed to investigate whether ox-LDL-IC are actually present in the diabetic retina, and to define their effects on human retinal pericytes vs. ox-LDL. In retinal sections from people with type 2 diabetes, co-staining for ox-LDL and IgG was present, proportionate to DR severity, and detectable even in the absence of clinical DR. In contrast, no such staining was observed in retinas from non-diabetic subjects. In vitro, human retinal pericytes were treated with native (N-) LDL, ox-LDL, and ox-LDL-IC (0-200 mg protein/l), and measures of viability, receptor expression, apoptosis, ER and oxidative stresses, and cytokine secretion were evaluated. Ox-LDL-IC exhibited greater cytotoxicity than ox-LDL towards retinal pericytes. Acting through the scavenger (CD36) and IgG (CD64) receptors, low concentrations of ox-LDL-IC triggered apoptosis mediated by oxidative and ER stresses, and enhanced inflammatory cytokine secretion. The data suggest that IC formation in the diabetic retina enhances the injurious effects of ox-LDL. These findings offer new insights into pathogenic mechanisms of DR, and may lead to new preventive measures and treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale: Increasing epithelial repair and regeneration may hasten resolution of lung injury in patients with the Acute Respiratory Distress Syndrome (ARDS). In animal models of ARDS, Keratinocyte Growth Factor (KGF) reduces injury and increases epithelial proliferation and repair. The effect of KGF in the human alveolus is unknown.

Objectives: To test whether KGF can attenuate alveolar injury in a human model of ARDS.

Methods: Volunteers were randomized to intravenous KGF (60 μg/kg) or placebo for 3 days, before inhaling 50μg lipopolysaccharide. Six hours later, subjects underwent bronchoalveolar lavage (BAL) to quantify markers of alveolar inflammation and cell-specific injury.

Measurements and Main Results: KGF did not alter leukocyte infiltration or markers of permeability in response to LPS. KGF increased BAL concentrations of Surfactant Protein D (SP-D), MMP-9, IL-1Ra, GM-CSF and CRP. In vitro, BAL fluid from KGF-treated subjects (KGF BAL) inhibited pulmonary fibroblast proliferation, but increased alveolar epithelial proliferation. Active MMP-9 increased alveolar epithelial wound repair. Finally, BAL from the KGF pre-treated group enhanced macrophage phagocytic uptake of apoptotic epithelial cells and bacteria compared with BAL from the placebo-treated group. This effect was blocked by inhibiting activation of the GM-CSF receptor.

Conclusions: KGF treatment increases BAL SP-D, a marker of type II alveolar epithelial cell proliferation in a human model of ALI. Additionally KGF increases alveolar concentrations of the anti-inflammatory cytokine IL-1Ra, and mediators that drive epithelial repair (MMP-9) and enhance macrophage clearance of dead cells and bacteria (GM-CSF).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), which inhibits apoptosis and promotes angiogenesis, is expressed in cancers suppressing immune surveillance. Its biological role in human glioblastoma is, however, only poorly understood. We examined in-vivo expression of MIF in 166 gliomas and 23 normal control brains by immunohistochemistry. MIF immunoreactivity was enhanced in neoplastic astrocytes in WHO grade II glioma and increased significantly in higher tumour grades (III-IV). MIF expression was further assessed in 12 glioma cell lines in vitro. Quantitative RT-PCR showed that MIF mRNA expression was elevated up to 800-fold in malignant glioma cells compared with normal brain. This translated into high protein levels as assessed by immunoblotting of total cell lysates and by ELISA-based measurement of secreted MIF. Wild-type p53-retaining glioma cell lines expressed higher levels of MIF, which may be connected with the previously described role of MIF as a negative regulator of wild-type p53 signalling in tumour cells. Stable knockdown of MIF by shRNA in glioma cells significantly increased tumour cell susceptibility towards NK cell-mediated cytotoxicity. Furthermore, supernatant from mock-transfected cells, but not from MIF knockdown cells, induced downregulation of the activating immune receptor NKG2D on NK and CD8+ T cells. We thus propose that human glioma cell-derived MIF contributes to the immune escape of malignant gliomas by counteracting NK and cytotoxic T-cell-mediated tumour immune surveillance. Considering its further cell-intrinsic and extrinsic tumour-promoting effects and the availability of small molecule inhibitors, MIF seems to be a promising candidate for future glioma therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type III galactosemia is an inherited disease caused by mutations which affect the activity of UDP-galactose 4'-epimerase (GALE). We evaluated the impact of four disease-associated variants (p.N34S, p.G90E, p.V94M and p.K161N) on the conformational stability and dynamics of GALE. Thermal denaturation studies showed that wild-type GALE denatures at temperatures close to physiological, and disease-associated mutations often reduce GALE's thermal stability. This denaturation is under kinetic control and results partly from dimer dissociation. The natural ligands, NAD(+) and UDP-glucose, stabilize GALE. Proteolysis studies showed that the natural ligands and disease-associated variations affect local dynamics in the N-terminal region of GALE. Proteolysis kinetics followed a two-step irreversible model in which the intact protein is cleaved at Ala38 forming a long-lived intermediate in the first step. NAD(+) reduces the rate of the first step, increasing the amount of undigested protein whereas UDP-glucose reduces the rate of the second step, increasing accumulation of the intermediate. Disease-associated variants affect these rates and the amounts of protein in each state. Our results also suggest communication between domains in GALE. We hypothesize that, in vivo, concentrations of natural ligands modulate GALE stability and that it should be possible to discover compounds which mimic the stabilising effects of the natural ligands overcoming mutation-induced destabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viral infection triggers an early host response through activation of pattern recognition receptors, including Toll-like receptors (TLR). TLR signaling cascades induce production of type I interferons and proinflammatory cytokines involved in establishing an anti-viral state as well as in orchestrating ensuing adaptive immunity. To allow infection, replication, and persistence, (herpes)viruses employ ingenious strategies to evade host immunity. The human gamma-herpesvirus Epstein-Barr virus (EBV) is a large, enveloped DNA virus persistently carried by more than 90% of adults worldwide. It is the causative agent of infectious mononucleosis and is associated with several malignant tumors. EBV activates TLRs, including TLR2, TLR3, and TLR9. Interestingly, both the expression of and signaling by TLRs is attenuated during productive EBV infection. Ubiquitination plays an important role in regulating TLR signaling and is controlled by ubiquitin ligases and deubiquitinases (DUBs). The EBV genome encodes three proteins reported to exert in vitro deubiquitinase activity. Using active site-directed probes, we show that one of these putative DUBs, the conserved herpesvirus large tegument protein BPLF1, acts as a functional DUB in EBV-producing B cells. The BPLF1 enzyme is expressed during the late phase of lytic EBV infection and is incorporated into viral particles. The N-terminal part of the large BPLF1 protein contains the catalytic site for DUB activity and suppresses TLR-mediated activation of NF-κB at, or downstream of, the TRAF6 signaling intermediate. A catalytically inactive mutant of this EBV protein did not reduce NF-κB activation, indicating that DUB activity is essential for attenuating TLR signal transduction. Our combined results show that EBV employs deubiquitination of signaling intermediates in the TLR cascade as a mechanism to counteract innate anti-viral immunity of infected hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mycotoxin alternariol (AOH) is an important contaminant of fruits and cereal products. The current study sought to address the effect of a non-toxic AOH concentration on the proteome of the steroidogenic H295R cell model. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture (SILAC) coupled to 1D-SDS-PAGE-LC-MS/MS was applied to subcellular-enriched protein samples. Gene ontology (GO) and ingenuity pathway analysis (IPA) were further carried out for functional annotation and identification of protein interaction networks. Furthermore, the effect of AOH on apoptosis and cell cycle distribution was also determined by the use of flow cytometry analysis. This work identified 22 proteins that were regulated significantly. The regulated proteins are those involved in early stages of steroid biosynthesis (SOAT1, NPC1, and ACBD5) and C21-steroid hormone metabolism (CYP21A2 and HSD3B1). In addition, several proteins known to play a role in cellular assembly, organization, protein synthesis, and cell cycle were regulated. These findings provide a new framework for studying the mechanisms by which AOH modulates steroidogenesis in H295R cell model. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.

CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-κB. In turn, NF-κB signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-β-activated kinase-1 (TAK1) phosphorylation of NF-κB-activating IκB kinase 2 (IKK2), leading to increased NF-κB activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-κB-mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of DP103 correlated with enhanced MMP9, reduced overall survival, and reduced survival after relapse. Together, these data indicate that a positive DP103/NF-κB feedback loop promotes constitutive NF-κB activation in invasive breast cancers and activation of this pathway is linked to cancer progression and the acquisition of chemotherapy resistance. Furthermore, our results suggest that DP103 has potential as a therapeutic target for breast cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian carcinoma (OC) is the most lethal of the gynecological malignancies, often presenting at an advanced stage. Treatment is hampered by high levels of drug resistance. The taxanes are microtubule stabilizing agents, used as first-line agents in the treatment of OC that exert their apoptotic effects through the spindle assembly checkpoint. BUB1-related protein kinase (BUBR1) and mitotic arrest deficient 2 (MAD2), essential spindle assembly checkpoint components, play a key role in response to taxanes. BUBR1, MAD2, and Ki-67 were assessed on an OC tissue microarray platform representing 72 OC tumors of varying histologic subtypes. Sixty-one of these patients received paclitaxel and platinum agents combined; 11 received platinum alone. Overall survival was available for all 72 patients, whereas recurrence-free survival (RFS) was available for 66 patients. Increased BUBR1 expression was seen in serous carcinomas, compared with other histologies (P = .03). Increased BUBR1 was significantly associated with tumors of advanced stage (P = .05). Increased MAD2 and BUBR1 expression also correlated with increased cellular proliferation (P < .0002 and P = .02, respectively). Reduced MAD2 nuclear intensity was associated with a shorter RFS (P = .03), in ovarian tumors of differing histologic subtype (n = 66). In this subgroup, for those women who received paclitaxel and platinum agents combined (n = 57), reduced MAD2 intensity also identified women with a shorter RFS (P < .007). For the entire cohort of patients, irrespective of histologic subtype or treatment, MAD2 nuclear intensity retained independent significance in a multivariate model, with tumors showing reduced nuclear MAD2 intensity identifying patients with a poorer RFS (P = .05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. Methods: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. Results: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. Conclusions: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT: Fetal ovarian development and primordial follicle formation underpin future female fertility. Prokineticin (PROK) ligands regulate cell survival, proliferation and angiogenesis in adult reproductive tissues including the ovary. However, their expression and function during fetal ovarian development remains unclear.

OBJECTIVE: To investigate expression and localization of the PROK ligands, receptors and their downstream transcriptional targets in the human fetal ovary.

SETTING: This study was conducted at the University of Edinburgh.

PARTICIPANTS: Ovaries were collected from 37 morphologically normal human fetuses.

DESIGN AND MAIN OUTCOME MEASURES: mRNA and protein expression of PROK ligands and receptors was determined in human fetal ovaries using qRT-PCR, immunoblotting and immunohistochemistry. Functional studies were performed using a human germ tumour cell line (TCam-2) stably transfected with PROKR1.

RESULTS: Expression of PROK1 and PROKR1 was significantly higher in mid-gestation ovaries (17-20 weeks) than at earlier gestations (8-11 and 14-16 weeks). PROK2 significantly increased across the gestations examined. PROKR2 expression remained unchanged. PROK ligand and receptor proteins were predominantly localised to germ cells (including oocytes within primordial follicles) and endothelial cells, indicating these cell types to be the targets of PROK signalling in the human fetal ovary. PROK1 treatment of a germ cell line stably-expressing PROKR1 resulted in ERK phosphorylation, and elevated COX2 expression.

CONCLUSIONS: Developmental changes in expression and regulation of COX2 and pERK by PROK1 suggest that PROK ligands may be novel regulators of germ cell development in the human fetal ovary, interacting within a network of growth and survival factors prior to primordial follicle formation.