972 resultados para T-cell receptor (TCR) repertoire
Resumo:
Bone remodeling during tooth movement is regulated by local and systemic factors. Two regulators of bone metabolism are growth hormone (GH) and insulin-like growth factor-I (IGF-1). Their effects are mediated via binding to GH receptor (GHR) and IGF-I receptor (IGF-IR) in target tissues. Corticosteroids may affect the activity of these growth factors. This study examined the effect of prednisolone on GHR and IGF-IR expression in dental tissues following orthodontic tooth movement. The corti ticosteroid-treated group (N = 6) was administered prednisolone ( 1 mg/kg,) daily and the control group (N = 6) received equivalent volumes of saline. An orthodontic force (30 g) was applied to the maxillary first molar. Animals were sacrificed 12 days postappliance insertion. Sagittal sections of the first molar were stained for GHR and IGF-IR immunoreactivity. GHR and IGF-IR cell counts were elevated following appliance-treatment. Orthodontic tooth movement appeared to up-regulate GHR and IGF-IR immunoreactivity, but this up-regulation was reduced following prednisolone treatment. The suppression of GHR and IGF-I immunoreactivity in steroid-treated animals infers the mechanism whereby bone resorption and deposition, necessary for orthodontic tooth movement, may be inhibited by prednisolone. However, at 12 days postappliance insertion. no difference in orthodontic tooth movement was observed following low-dose prednisolone treatment.
Resumo:
Urethral epithelial cells are invaded by Neisseria gonorrhoeae during gonococcal infection in men. To understand further the mechanisms of gonococcal entry into host cells, we used the primary human urethral epithelial cells (PHUECs) tissue culture system recently developed by our laboratory. These studies showed that human asialoglycoprotein receptor (ASGP-R) and the terminal lactosamine of lacto-N-neotetraose-expressing gonococcal lipooligosaccharide (LOS) play an important role in invasion of PHUECs. Microscopy studies showed that ASGP-R traffics to the cell surface after gonococcal challenge. Co-localization of ASGP-R with gonococci was observed. As ASGP-R-mediated endocytosis is clathrin dependent, clathrin localization in PHUECs was examined after infection. Infected PHUECs showed increased clathrin recruitment and co-localization of clathrin and gonococci. Preincubating PHUECs in 0.3 M sucrose or monodansylcadaverine (MDC), which both inhibit clathrin-coated pit formation, resulted in decreased invasion. N. gonorrhoeae strain 1291 produces a single LOS glycoform that terminates with Gal(beta1-4)Glc-Nac(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose). Invasion assays showed that strain 1291 invades significantly more than four isogenic mutants expressing truncated LOS. Sialylation of strain 1291 LOS inhibited invasion significantly. Preincubation of PHUECs in asialofetuin (ASF), an ASGP-R ligand, significantly reduced invasion. A dose-response reduction in invasion was observed in PHUECs preincubated with increasing concentrations of NaOH-deacylated 1291 LOS. These studies indicated that an interaction between lacto-N-neotetraose-terminal LOS and ASGP-R allows gonococcal entry into PHUECs.
Resumo:
Selection in the thymus restricted by MHC and self-peptide shapes the diverse reactivities of the T-cell population which subsequently seeds into the peripheral tissues, in anticipation of the universe of pathogen antigens to which the organism may be exposed. A necessary corollary is the potential for T-cell self-reactivity (autoimmunity) in the periphery. Transgenic mouse models in which transgene expression in the thymus is prevented or excluded, have been particularly useful for determining the immunological outcome when T-cells encounter transgene-encoded 'self' antigen in peripheral tissues. Data suggest that non-mutually exclusive mechanisms of T-cells 'ignoring' self-antigen, T-cell deletion, T-cell anergy and T-cell immunoregulation have evolved to prevent self-reactivity while maintaining T-cell diversity. The peripheral T-cell repertoire, far from being static following maturation through the thymus, is in a dynamic stated determined by these peripheral selective and immunoregulatory influences. This article reviews the evidence with particular reference to CD8+ive T-cells.
Resumo:
Using differential display PCR, we identified a novel gene upregulated in renal cell carcinoma. Characterization of the full-length cDNA and gene revealed that the encoded protein is a human homologue of the Drosophila melanogaster Tweety protein, and so we have termed the novel protein TTYH2. The orthologous mouse cDNA was also identified and the predicted mouse protein is 81% identical to the human protein. The encoded human TTYH2 protein is 534 amino acids and, like the other members of the tweety-related protein family, is a putative cell surface protein with five transmembrane regions. TTYH2 is located at 17q24; it is expressed most highly in brain and testis and at lower levels in heart, ovary, spleen, and peripheral blood leukocytes. Expression of this gene is upregulated in 13 of 16 (81%) renal cell carcinoma samples examined. In addition to a putative role in brain and testis, the overexpression of TTYH2 in renal cell carcinoma suggests that it may have an important role in kidney tumorigenesis.
Resumo:
This study investigated the receptor binding affinities of a C5a agonist and cyclic antagonists for polymorphonuclear leukocytes (PMNs) isolated from human, sheep, pig, dog, rabbit, guinea pig, rat and mouse. The affinities of the two small molecule antagonists, F-[OPdChaWR] and AcF-[OPdChaWR], and the agonist, YSFKPMPLaR, revealed large differences in C5a receptor (C5aR) affinities between species. The antagonists bound to human, rat and dog PMNs with similar high affinities, but with lower affinities to PMNs from all other species. The C5a agonist also bound with varying affinities between species, but showed a different affinity profile to the antagonists. In contrast, recombinant human C5a had similar affinity for PMNs of all species investigated. The low correlation between the affinities of the antagonists and the agonist between species either suggests that different receptor residues are important for distinguishing between agonist/antagonist binding, or that the agonist and antagonist peptides bind to two distinct sites within the C5aR.
Resumo:
E-cadherin is a major adherens junction protein of epithelial cells, with a central role in cell-cell adhesion and cell polarity. Newly synthesized E-cadherin is targeted to the basolateral cell surface, We analyzed targeting information in the cytoplasmic tail of E-cadherin by utilizing chimeras of E-cadherin fused to the ectodo- main of the interleukin-2 alpha (IL-2 alpha) receptor expressed in Madin-Darby canine kidney and LLC-PK1 epithelial cells, Chimeras containing the full-length or membrane-proximal half of the E-cadherin cytoplasmic tail were correctly targeted to the basolateral domain. Sequence analysis of the membrane-proximal tail region revealed the presence of a highly conserved dileucine motif, which was analyzed as a putative targeting signal by mutagenesis. Elimination of this motif resulted in the loss of Tac/E-cadherin basolateral localization, pinpointing this dileucine signal as being both necessary and sufficient for basolateral targeting of E-cadherin, Truncation mutants unable to bind beta -catenin were correctly targeted, showing, contrary to current understanding, that beta -catenin is not required for basolateral trafficking. Our results also provide evidence that dileucine mediated targeting is maintained in UC-PK, cells despite the altered polarity of basolateral proteins with tyrosine-based signals in this cell line, These results provide the first direct insights into how E-cadherin is targeted to the basolateral membrane.
Resumo:
The beta -amino acid, taurine, is a full agonist of the human glycine receptor al subunit when recombinantly expressed in a mammalian (HEK293) cell line, but a partial agonist of the same receptor when expressed in Xenopus oocytes. Several residues in the Ala101-Thr112 domain have previously been identified as determinants of beta -amino acid binding and gating mechanisms in Xenopus oocyte-expressed receptors. The present study used the substituted cysteine accessibility method to investigate the role of this domain in controlling taurine-specific binding and gating mechanisms of glycine receptors recombinantly expressed in mammalian cells. Asn102 and Glu103 are identified as taurine and glycine binding sites, whereas Ala101 is eliminated as a possible binding site. The N102C mutation also abolished the antagonistic actions of taurine, indicating that this site does not discriminate between the putative agonist- and antagonist-bound conformations of beta -amino acids. The effects of mutations from Lys104-Thr112 indicate that the mechanism by which this domain controls beta -amino acid-specific binding and gating processes differs substantially depending on whether the receptor is expressed in mammalian cells or Xenopus oocytes. Thr112 is the only domain element in mammalian cell-expressed GlyRs which was demonstrated to discriminate between glycine and taurine.
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.
Resumo:
Background: Dendritic cells (DC) are believed to be one of the first cell types infected during HIV transmission. Recently a single C-type lectin receptor (CLR), DC-SIGN, has been reported to be the predominant receptor on monocyte derived DC (MDDC) rather than CD4. The role of other CLRs in HIV binding and HIV binding by CLRs on other types of DC in vivo is largely unknown. Objectives and study design: Review HIV binding to DC populations, both in vitro and in vivo, in light of the immense interest of a recently re-identified CLR called DC-SIGN. Results and conclusions: From recent work, it is clear that immature MDDC have a complex pattern of HIV gp120 binding. In contrast to other cell types gp120 has the potential to bind to several receptors on DC including CD4 and several types of C type lectin receptor, not just exclusively DC-SIGN. Given the diverse types of DC in vivo future work will need to focus on defining the receptors for HIV binding to these different cell types. Mucosal transmission of HIV in vivo targets immature sessile DCs, including Langerhans cells which lack DC-SIGN. The role of CLRs and DC-SIGN in such transmission remains to be defined. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The Eph family (of receptor tyrosine kinases plays a crucial role during development and is implicated in oncogenesis. Using a partial cDNA clone of an Eph-related kinase (Esk) we isolated the complete coding region of a gene which we show to be murine EphA1 by both structural and functional criteria. The chromosomal localization is shown to be syntenic to hEphA1 and the genomic organization also shows distinct features found in the hEphA1 gene. Functionally, in keeping with findings for the human homologue, both soluble recombinant and native mEphA1 show preferential binding to ephrin A1. However, we also observed significant binding to other A-type ligands as has been observed for other Eph receptors. We analysed the expression of mEphA1 mRNA by in situ hybridization on tissue sections. mEphA1 was expressed in epithelial elements of skin, adult thymus, kidney and adrenal cortex. Taken together with previous Northern blotting data these results suggest that mEphA1 is expressed widely in differentiated epithelial cells.
Resumo:
This study focuses on characterizing the genetic and biological alterations associated with squamous cell carcinoma development. Normal human epidermal keratinocytes (HEKs), cells isolated from a preneoplastic lesion (IEC-1), and two neoplastic cell lines, SCC-25 and COLD-16, were grown as raft cultures, and their gene expression profiles were screened using cDNA arrays. Our data indicated that the expression levels of at least 37 genes were significantly (P less than or equal to 0.05; 1.9% of genes screened) altered in neoplastic cells compared with normal cells. Of these genes, 10 genes were up-regulated and 27 genes were down-regulated in the neoplastic cells. In addition, 51% of the genes altered in the neoplastic cells were already altered in the preneoplastic IEC-1 cells. Immunohistochemical staining of patient tumors was used to verify the cDNA array analysis. Our analysis indicated that alterations in genes associated with extracellular matrix production and apoptosis are disrupted in preneoplastic cells, whereas later stages of neoplasia are associated with alterations in gene expression for genes involved in DNA repair or epidermal growth factor (EGF) receptor/mitogen-activated protein kinase kinase (MAPKK)/MAPK/activator protein-1 (AP-1) signaling. Subsequent functional analysis of the alterations in expression of the EGF receptor/MAPKK/MAPK/AP-1 genes suggested they did not contribute to the neoplastic phenotype.
Resumo:
Expression of the mRNAs encoding the astrocytic (EAAT1, EAAT2) and neuronal (EAAT3, EAAT4) excitatory amino acid transporters and the AMPA-type glutamate receptor subunits GluR2 and GluR3 was investigated in postmortem cerebellar extracts from a patient with olivopontocerebellar atrophy (OPCA) and in material from three age-matched controls. Decreased expression in the steady state level of EAAT4 mRNA in the OPCA sample was correlated with the selective loss of Purkinje cells. Neuropathological evaluation revealed reactive gliosis and concomitantly increased expression of the mRNA encoding astrocytic glial fibrillary acidic protein (GFAP). Expression of the mRNAs encoding the AMPA receptor subunits GluR2 and GluR3 subunits was found to be decreased in OPCA suggesting that excitotoxic mechanism could play a role in the pathogenesis of the selective neuronal cell death in this disorder.
Resumo:
GABA(A) receptor sites were characterised in cerebral cortex tissue samples from deceased neurologically normal infants who had come to autopsy during the third trimester of pregnancy. Pharmacological parameters were obtained from homogenate binding studies which utilised the 'central-type' benzodiazepine ligands [H-3]diazepam and [H-3]flunitrazepam, and from the GABA activation of [H-3]diazepam binding. It was found that the two radioligands behaved differently during development. The affinity of [H-3]flunitrazepam for its binding site did not vary significantly between preparations, whereas the [H-3]diazepam K-D showed marked regional and developmental variations: infant tissues showed a distinctly lower affinity than adults for this ligand. The density of [H-3]flunitrazepam binding sites increased similar to35% during the third trimester to reach adult levels by term, whereas [H-3]diazepam binding capacity declined slightly but steadily throughout development. The GABA activation of [H-3]diazepam binding was less efficient early in the trimester, in that the affinity of the agonist was significantly lower, though it rose to adult levels by term. The strength of the enhancement response increased to adult levels over the same time-frame. The results strongly suggest that the subunit composition of cortical GABA(A) sites changes significantly during this important developmental stage. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The pharmacology of the N -methyl-d-aspartate (NMDA) receptor site was examined in pathologically affected and relatively spared regions of cerebral cortex tissue obtained at autopsy from Alzheimer's disease cases and matched controls. The affinity and density of the [H-3]MK-801 binding site were delineated along with the enhancement of [H-3]MK-801 binding by glutamate and spermine. Maximal enhancement induced by either ligand was regionally variable; glutamate-mediated maximal enhancement was higher in controls than in Alzheimer's cases in pathologically spared regions, whereas spermine-mediated maximal enhancement was higher in controls in areas susceptible to pathological damage. These and other data suggest that the subunit composition of NMDA receptors may be locally variable. Studies with modified conantokin-G (con-G) peptides showed that Ala(7)-con-G had higher affinity than Lys(7)-con-G, and also defined two distinct binding sites in controls. Nevertheless, the affinity for Lys(7)-con-G was higher overall in Alzheimer's brain than in control brain, whereas the reverse was true for Ala(7)-con-G. Over-excitation mediated by specific NMDA receptors might contribute to localized brain damage in Alzheimer's disease. Modified conantokins are useful for identifying the NMDA receptors involved, and may have potential as protective agents.