957 resultados para T-cell development
Resumo:
Ecological data suggest a long-term diet high in plant material rich in biologically active compounds, such as the lignans, can significantly influence the development of prostate cancer over the lifetime of an individual. The capacity of a pure mammalian lignan, enterolactone (ENL), to influence the proliferation of the LNCaP human prostate cancer cell line was investigated as a function of cell density, metabolic activity, expression and secretion of prostate specific antigen (PSA), cell cycle profile, and the expression of genes involved in development and progression of prostate cancer. Treatment with a subcytotoxic concentration of ENL (60 mu M for 72 h) was found to reduce: cell density (57.5%, SD 7.23, p < 0.001), metabolic activity (55%, SD 0.03, p < 0.001), secretion of PSA (48.50% SD 4.74, p = 0.05) and induce apoptosis (8.33-fold SD 0.04, p = 0.001) compared to untreated cells. Cotreatment with 10 mu M etoposide was found to increase apoptosis by 50.17% (SD 0.02, p < 0.001). Additionally, several key genes (e.g. MCMs, survivin and CDKs) were beneficially regulated by ENL treatment (p < 0.05). The data suggest that the antiproliferative activity of ENL is a consequence of altered expression of cell cycle associated genes and provides novel molecular evidence for the antiproliferative properties of a pure lignan in prostate cancer.
Resumo:
It is usually expected that the intelligent controlling mechanism of a robot is a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot - thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. In particular, the use of rodent primary dissociated cultured neuronal networks for the control of mobile `animals' (artificial animals, a contraction of animal and materials) is a novel approach to discovering the computational capabilities of networks of biological neurones. A dissociated culture of this nature requires appropriate embodiment in some form, to enable appropriate development in a controlled environment within which appropriate stimuli may be received via sensory data but ultimate influence over motor actions retained. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animal) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This 'closed loop' interaction with the environment through both sensing and effecting will enable investigation of its learning capacity This paper details the components of the overall animat closed loop system and reports on the evaluation of the results from the experiments being carried out with regard to robot behaviour.
Resumo:
We reported previously that bone morphogenetic proteins (BMPs) potently suppress CYP17 expression and androgen production by bovine theca interna cells (TC) in vitro. In this study, real-time PCR was used to analyse gene expression in TC and granulosa cell (GC) layers from developing bovine antral follicles (1-18 mm). Abundance of mRNA transcripts for four BMPs (BMP2, BMP4, BMP6, and BMP7) and associated type I (BMPR1A, BMPR1B, ACVR1 and ACVR1B) and type II (BMPR2, ACVR2A and ACVR2B) receptors showed relatively modest, though significant, changes during follicle development. BMP2 was selectively expressed in GC, while BMP6, BMP7 and betaglycan (TGFBR3) were more abundant in TC. Abundance of betaglycan mRNA (inhibin co-receptor) in TC increased progressively (fivefold; P<0.001) as follicles grew from 1-2 to 9-10 mm. This suggests a shift in thecal responsiveness to GC-derived inhibin, produced in increasing amounts as follicles achieve dominance. This prompted us to investigate whether inhibin can function as a physiological antagonist of BMP action on bovine TC in vitro, in a manner comparable to that for activin signalling. BMP4, BMP6 and BMP7 abolished LH-induced androstenedione secretion and suppressed CYP17 mRNA >200-fold (P<0.001), while co-treatment with inhibin-A reversed the suppressive action of BMP in each case (P<0.001). Results support a physiological role for granulosa-derived inhibin as an antagonist of BMP action on thecal androgen synthesis. A shift in intrafollicular balance between thecal BMP signalling (inhibitory for androgen synthesis) and betaglycan-dependent inhibin signalling (stimulatory for androgen synthesis) accords with the physiological requirement to deliver an adequate supply of aromatase substrate to GC of developing follicles.
Resumo:
The role of cell cycle dependent molecules in controlling the switch from cardiac myocyte hyperplasia to hypertrophy remains unclear, although in the rat this process occurs between day 3 and 4 after birth. In this study we have determined (1) cell cycle profiles by fluorescence activated cell sorting (FACS); and (2) expressions, co-expressions and activities of a number of cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors by reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting andin vitrokinase assays in freshly isolated rat cardiac myocytes obtained from 2, 3, 4 and 5-day-old animals. The percentage of myocytes found in the S phase of the cell cycle decreased significantly during the transition from hyperplasia to hypertrophy (5.5, 3.5, 2.3 and 1.9% of cells in 2-, 3-, 4- and 5-day-old myocytes, respectively,P<0.05), concomitant with a significant increase in the percentage of G0/G1phase cells. At the molecular level, the expressions and activities of G1/S and G2/M phase acting cyclins and CDKs were downregulated significantly during the transition from hyperplasia to hypertrophy, whereas the expressions and activities of G1phase acting cyclins and CDKs were upregulated significantly during this transition. In addition, p21CIP1- and p27KIP1- associated CDK kinase activities remained relatively constant when histone H1 was used as a substrate, whereas phosphorylation of the retinoblastoma protein was upregulated significantly during the transition from hyperplasia to hypertrophy. Thus, there is a progressive and significant G0/G1phase blockade during the transition from myocyte hyperplasia to hypertrophy. Whilst CDK2 and cdc2 may be pivotal in the withdrawal of cardiac myocytes from the cell cycle, CDK4 and CDK6 may be critical for maintaining hypertrophic growth of the myocyte during development.
Resumo:
In recent years, there have been major developments in the understanding of the cell cycle. It is now known that normal cellular proliferation is tightly regulated by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. The expression and activity of components of the cell cycle can be altered during the development of a variety of diseases where aberrant proliferation contributes to the pathology of the illness. Apart from yielding a new source of untapped therapeutic targets, it is likely that manipulating the activity of such proteins in diseased states will provide an important route for treating proliferative disorders, and the opportunity to develop a novel class of future medicines.
Arresting developments in the cardiac myocyte cell cycle: Role of cyclin-dependent kinase inhibitors
Resumo:
Like most other cells in the body, foetal and neonatal cardiac myocytes are able to divide and proliferate. However, the ability of these cells to undergo cell division decreases progressively during development such that adult myocytes are unable to divide. A major problem arising from this inability of adult cardiac myocytes to proliferate is that the mature heart is unable to regenerate new myocardial tissue following severe injury, e.g. infarction, which can lead to compromised cardiac pump function and even death. Studies in proliferating cells have identified a group of genes and proteins that controls cell division. These proteins include cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDKIs), which interact with each other to form complexes that are essential for controlling normal cell cycle progression. A variety of other proteins, e.g. the retinoblastoma protein (pRb) and members of the E2F family of transcription factors, also can interact with, and modulate the activities of, these complexes. Despite the major role that these proteins play in other cell types, little was known until recently about their existence and activities in immature (proliferating) or mature (non-proliferating) cardiac myocytes. The reason(s) why cardiac myocytes lose their ability to divide during development remains unknown, but if strategies were developed to understand the mechanisms underlying cardiac myocyte growth, it could open up new avenues for the treatment of cardiovascular disease. In this article, we shall review the function of the cell cycle machinery and outline some of our recent findings pertaining to the involvement of the cell cycle in modulating cardiac myocyte growth and hypertrophy.
Resumo:
Adult skeletal muscle possesses a resident stem cell population called satellite cells which are responsible for tissue repair following damage. Satellite cell migration is crucial in promoting rapid tissue regeneration but is a poorly understood process. Furthermore, the mechanisms facilitating satellite cell movement have yet to be elucidated. Here the process of satellite cell migration has been investigated revealing that they undergo two distinct phases of movement; firstly under the basal lamina and then rapidly increasing their velocity when on the myofibre surface. Most significantly we show that satellite cells move using a highly dynamic blebbing based mechanism and not via lamellopodia mediated propulsion. We show that nitric oxide and non-canonical Wnt signalling pathways are necessary for regulating the formation of blebs and the migration of satellite cells. In summary, we propose that the formation of blebs and their necessity for satellite cell migration has significant implications in the future development of therapeutic regimes aimed at promoting skeletal muscle regeneration.
Resumo:
Leaf expansion in the fast-growing tree,Populus × euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0–3) and late (LPI, 6–8) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2].
Resumo:
Single-cell analysis is essential for understanding the processes of cell differentiation and metabolic specialisation in rare cell types. The amount of single proteins in single cells can be as low as one copy per cell and is for most proteins in the attomole range or below; usually considered as insufficient for proteomic analysis. The development of modern mass spectrometers possessing increased sensitivity and mass accuracy in combination with nano-LC-MS/MS now enables the analysis of single-cell contents. In Arabidopsis thaliana, we have successfully identified nine unique proteins in a single-cell sample and 56 proteins from a pool of 15 single-cell samples from glucosinolate-rich S-cells by nanoLC-MS/MS proteomic analysis, thus establishing the proof-of-concept for true single-cell proteomic analysis. Dehydrin (ERD14_ARATH), two myrosinases (BGL37_ARATH and BGL38_ARATH), annexin (ANXD1_ARATH), vegetative storage proteins (VSP1_ARATH and VSP2_ARATH) and four proteins belonging to the S-adenosyl-l-methionine cycle (METE_ARATH, SAHH1_ARATH, METK4_ARATH and METK1/3_ARATH) with associated adenosine kinase (ADK1_ARATH), were amongst the proteins identified in these single-S-cell samples. Comparison of the functional groups of proteins identified in S-cells with epidermal/cortical cells and whole tissue provided a unique insight into the metabolism of S-cells. We conclude that S-cells are metabolically active and contain the machinery for de novo biosynthesis of methionine, a precursor for the most abundant glucosinolate glucoraphanine in these cells. Moreover, since abundant TGG2 and TGG1 peptides were consistently found in single-S-cell samples, previously shown to have high amounts of glucosinolates, we suggest that both myrosinases and glucosinolates can be localised in the same cells, but in separate subcellular compartments. The complex membrane structure of S-cells was reflected by the presence of a number of proteins involved in membrane maintenance and cellular organisation.
Resumo:
Colon cancer is a leading and expanding cause of death worldwide. A major contributory factor to this disease is diet composition; some components are beneficial (e.g. dietary fibre) whilst others are detrimental (e.g. alcohol). Garlic oil is a prominent dietary constituent that prevents the development of colorectal cancer. This effect is believed to be mainly due to diallyl disulphide (DADS), which selectively induces redox stress in cancerous (rather than normal) cells which leads to apoptotic cell death. However, the detailed mechanism by which DADS causes apoptosis remains unclear. We show that DADS-treatment of colonic adenocarcinoma cells (HT-29) initiates a cascade of molecular events characteristic of apoptosis. These include a decrease in cellular proliferation, translocation of phosphatidylserine to the plasma-membrane outer-layer, activation of caspase-3, genomic-DNA fragmentation and G2/M phase cell-cycle arrest. Short-chain fatty acids (SCFAs), particularly butyrate (abundantly produced in the gut by bacterial fermentation of dietary polysaccharides), enhance colonic cell integrity but, in contrast, inhibit colonic-cancer cell growth. Combining DADS with butyrate augmented the effect of butyrate on HT-29 cells. These results suggest that the anti-cancerous properties of DADS afford greater benefit when supplied with other favourable dietary factors (SCFA/polysaccharides) that likewise reduce colonic tumour development.
Resumo:
Evidence supports local roles for TGFβ superfamily members including activins and bone morphogenetic proteins (BMP) in follicle development. Access of these ligands to signaling receptors is likely modulated by extracellular binding proteins (BP). In this study we compared expression of four BPs (chordin, gremlin, noggin, follistatin) in granulosal (GC) and theca interna (TC) compartments of developing bovine antral follicles (1-18mm). Effects of FSH and IGF on BMP and BP expression by cultured GC, and effects of LH and BMPs on BP expression by cultured TC were also examined. Follicular expression of all four BP transcripts was higher in GC than TC compartments (P<0.001) a finding confirmed by immunohistochemistry. Follicle category affected (P<0.01) gremlin and follistatin mRNA abundance, with a significant cell-type x follicle category interaction for chordin, follistatin and noggin. Noggin transcript abundance was lower (P<0.05) in GC of large 'E-active' than 'E-inactive' follicles while follistatin mRNA level was higher (P<0.01). FSH enhanced CYP19, FSHR, INHBA and follistatin by GC without affecting BMP or BMP-BP expression. IGF increased CYP19 and follistatin, reduced BMP4, noggin and gremlin but did not affect chordin or FSHR mRNA levels. LH increased TC androgen secretion but had no effect on BMP or BP expression. BMPs uniformly suppressed TC androgen production whilst increasing chordin, noggin, and gremlin mRNA levels up to 20-fold (P<0.01). These findings support the hypothesis that extracellular BP, mostly from GC, contribute to the regulation of intrafollicular BMP/activin signaling. Enhancement of thecal BP expression by BMP implies an autoregulatory feedback role to prevent excessive signaling.
Resumo:
Members of the Arenaviridae are a threat to public health and can cause meningitis and hemorrhagic fever, yet treatment options remain limited by a lack of effective antivirals. In this study, we found that peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) complementary to viral genomic RNA were effective in reducing arenavirus replication in cell cultures and in vivo. PPMO complementary to the Junín virus genome were designed to interfere with viral RNA synthesis, translation, or both. However, only PPMO designed to potentially interfere with translation were effective in reducing virus replication. PPMO complementary to sequence that is highly conserved across arenaviruses and located at the 5’-termini of both genomic segments were effective against Junín, Tacaribe, Pichinde and Lymphocytic Choriomeningitis arenavirus-infected cell cultures, and suppressed viral titers in the livers of LCMV-infected mice. These results suggest that arenavirus 5’-genomic-termini represent promising targets for pan-arenavirus antiviral therapeutic development.