975 resultados para T(H)17 CELLS
Resumo:
PURPOSE. The goal of this study was to determine whether the medial rectus muscles of patients with a history of medial rectus underaction or overaction show alterations in the process of satellite cell activation when compared with normal age-matched control muscles. METHODS. Medial rectus muscles were obtained with consent from adult patients undergoing surgical resection due to medial rectus underaction or overaction and were prepared for histologic examination by fixation and paraffin embedding. Control muscles were obtained from cornea donor eyes of adults who had no history of strabismus or neuromuscular disease. Cross sections were obtained and stained immunohistochemically for the presence of activated satellite cells, as identified by MyoD immunoreactivity, and the presence of the total satellite cell population, as identified by Pax7 immunoreactivity. The percentages of MyoD- and Pax7-positive satellite cells per 100 myofibers in cross section were calculated. RESULTS. As predicted from results in the literature, MyoD-positive satellite cells, indicative of activation, were present in both the control and resected muscles. In the underacting medial rectus muscles, the percentages of MyoD- and Pax7-positive satellite cells, based on the number of myofibers, were approximately twofold higher than the percentages in the control muscles. In the overacting medial rectus muscles, the percentage of MyoD- positive satellite cells was twofold less than in the control muscles, whereas the percentage of Pax7-positive satellite cells significantly increased compared with that in the control specimens. CONCLUSIONS. The presence of an increased number of activated satellite cells in the resected underacting medial rectus muscles and the decreased numbers of activated satellite cells in the overacting muscles was unexpected. The upregulation in the number of MyoD- positive satellite cells in underacting muscles suggests that there is potential for successful upregulation of size in these muscles, as the cellular machinery for muscle repair and regeneration, the satellite cells, is retained and active in patients with medial rectus underaction. The decreased number of activated satellite cells in overacting MR muscle suggests that factors as yet unknown in these overacting muscles are able to affect the number of satellite cells and/or their responsiveness compared with normal age-matched control muscles. These hypotheses are currently being tested.
Resumo:
Purpose: To evaluate the short-term (10 months) safety of a single intravitreal injection of autologous bone marrow-derived mononuclear cells in patients with retinitis pigmentosa or cone-rod dystrophy. Methods: A prospective, Phase I, nonrandomized, open-label study including 3 patients with retinitis pigmentosa and 2 patients with cone-rod dystrophy and an Early Treatment Diabetic Retinopathy Study best-corrected visual acuity of 20/200 or worse. Evaluations including best-corrected visual acuity, full-field electroretinography, kinetic visual field (Goldman), fluorescein and indocyanine green angiography, and optical coherence tomography were performed at baseline and 1, 7, 13, 18, 22, and 40 weeks after intravitreal injection of 10 X 10(6) autologous bone marrow-derived mononuclear cells (0.1 mL) into 1 study eye of each patient. Results: No adverse event associated with the injection was observed. A 1-line improvement in best-corrected visual acuity was measured in 4 patients 1 week after injection and was maintained throughout follow-up. Three patients showed undetectable electroretinography responses at all study visits, while 1 patient demonstrated residual responses for dark-adapted standard flash stimulus (a wave amplitude approximately 35 mu V), which remained recordable throughout follow-up, and 1 patient showed a small response (a wave amplitude approximately 20 mu V) recordable only at Weeks 7, 13, 22, and 40. Visual fields showed no reduction (with a Goldman Standard V5e stimulus) for any patient at any visit. No other changes were observed on optical coherence tomography or fluorescein and indocyanine green angiograms. Conclusion: Intravitreal injection of autologous bone marrow-derived mononuclear cells in eyes with advanced retinitis pigmentosa or cone-rod dystrophy was associated with no detectable structural or functional toxicity over a period of 10 months. Further studies are required to investigate the role, if any, of autologous bone marrow-derived mononuclear cell therapy in the management of retinal dystrophies. RETINA 31: 1207-1214, 2011
Resumo:
Constant light (LL) is associated with high incidence of colon cancer. MLT supplementation was related to the significant control of preneoplastic patterns. We sought to analyze preneoplastic patterns in colon tissue from animals exposed to LL environment (14 days; 300 lx), MLT-supplementation (10 mg/kg/day) and DMH-treatment (1,2 dimethylhydrazine; 125 mg/kg). Rodents were sacrificed and MLT serum levels were measured by radioimmunoassay. Our results indicated that LL induced ACF development (p < 0.001) with a great potential to increase the number of CD133(+) and CD68(+) cells (p < 0.05 and p < 0.001). LL also increased the proliferative process (PCNA-Li; p < 0.001) as well as decreased caspase-3 protein (p < 0.001), related to higher COX-2 protein expression (p < 0.001) within pericryptal colonic stroma (PCCS). However, MLT-supplementation controlled the development of dysplastic ACF (p < 0.001) diminishing preneoplastic patterns into PCCS as CD133 and CD68 (p < 0.05 and p < 0.001). These events were relative to decreased PCNA-Li index and higher expression of caspase-3 protein. Thus, MLT showed a great potential to control the preneoplastic patterns induced by LL. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background Porphyria cutanea tarda (PCT) is a metabolic disease characterized by vesicles and blisters in sun-exposed areas and scleroderma-like lesions in sun-exposed and non-sun-exposed areas. Mast cells participate in the pathogenesis of bullous diseases and diseases that show sclerosis, including PCT. Moreover, transforming growth factor-beta (TGF-beta) is the main cytokine in the development of tissue sclerosis. The correlation of mast cells and TGF-beta with the lesions of PCT has not been examined, however. The possible role of mast cells and TGF-beta (and the relationship between them) in the development of PCT lesions is discussed. Methods To quantify mast cells and cells expressing TGF-beta in skin samples from patients with PCT and controls, immunohistochemical studies were performed in tissue sections allied to morphometric analyses. Results The numbers of mast cells and cells expressing TGF-beta per square millimiter were increased in the PCT group relative to controls, and there was a direct and significant correlation between the mast cell number and cells expressing TGF-beta in PCT. Conclusions The results suggest that the increased number of mast cells and of cells expressing TGF-beta, as well as their direct correlation, may contribute to the pathogenesis of the skin lesions in PCT.
Resumo:
Myelodysplastic syndrome (MDS) is a rare hematological malignancy in children. It was performed FISH analysis in 19 pediatric MDS patients to investigate deletions involving the PPAR gamma and TP53 genes. Significant losses in the PPAR gamma gene and deletions in the tumor suppressor gene TP53 were observed in 17 and 18 cases, respectively. Using quantitative RT-PCR, it was detected PPAR gamma transcript downexpression in a subset of these cases. G-banding analysis revealed 17p deletions in a small number of these cases. One MDS therapy-related patient had neither a loss of PPAR gamma nor TP53. These data suggest that the PPAR gamma and TP53 genes may be candidates for molecular markers in pediatric MDS, and that these potentially recurrent deletions could contribute to the identification of therapeutic approaches in primary pediatric MDS. (C) 2008 Elsevier Ltd. All fights reserved.
Resumo:
Yellow fever (YF) vaccines (17D-204 and 17DD) are well tolerated and cause very low rates of severe adverse events (YEL-SAE), such as serious allergic reactions, neurotropic adverse diseases (YEL-AND), and viscerotropic diseases (YEL-AVD). Viral and host factors have been postulated to explain the basis of YEL-SAE. However, the mechanisms underlying the occurrence of YEL-SAE remain unknown. The present report provides a detailed immunological analysis of a 23-year-old female patient. The patient developed a suspected case of severe YEL-AVD with encephalitis, as well as with pancreatitis and myositis, following receipt of a 17D-204 YF vaccination. The patient exhibited a decreased level of expression of Fc-gamma R in monocytes (CD16, CD32, and CD64), along with increased levels of NK T cells (an increased CD3(+) CD16(+/-) CD56(+/-)/CD3(+) ratio), activated T cells (CD4(+) and CD8(+) cells), and B lymphocytes. Enhanced levels of plasmatic cytokines (interleukin-6 [IL-6], IL-17, IL-4, IL-5, and IL-10) as well as an exacerbated ex vivo intracytoplasmic cytokine pattern, mainly observed within NK cells (gamma interferon positive [IFN-gamma(+)], tumor necrosis factor alpha positive [TNF-alpha(+)], and IL-4 positive [IL-4(+)]), CD8(+) T cells (IL-4(+) and IL-5(+)), and B lymphocytes (TNF-alpha(+), IL-4(+), and IL-10(+)). The analysis of CD4(+) T cells revealed a complex profile that consisted of an increased frequency of IL-12(+) and IFN-gamma(+) cells and a decreased percentage of TNF-alpha(+), IL-4(+), and IL-5+ cells. Depressed cytokine synthesis was observed in monocytes (TNF-alpha(+)) following the provision of antigenic stimuli in vitro. These results support the hypothesis that a strong adaptive response and abnormalities in the innate immune system may be involved in the establishment of YEL-AND and YEL-AVD.
Resumo:
Casearia sylvestris is used in Brazil as a popular medicine to treat ulcer, inflammation and tumour. Caseargrewiin F is a clerodane diterpene isolated from the ethanolic leaf extract of C.sylvestris. The aim of the study was to assess the capacity of the ethanolic extract of C.sylvestris leaves and caseargrewiin F to protect DNA and verify if both the compounds cause some DNA damage, using the micronucleus (MN) test and comet assay in mice. Balb-C mice were treated with the extract [3.13, 6.25, 12.5, 25, 50 and 75 mg/kg body weight (b.w.)] and caseargrewiin F (0.16, 0.32, 0.63, 1.3, 2.5 and 3.8 mg/kg b.w.) for 14 days. On day 15, DNA damage was induced by intra-peritoneal (i.p.) injection of cyclophosphamide (CP) (i.p.) at 50 mg/kg b.w. after the MN test and comet assay were performed. A protective effect of ethanolic extract was observed in MN test (6.25 and 12.5 mg/kg b.w.) and the comet assay (3.13 and 6.25, 12.5 and 25 mg/kg b.w.). Caseargrewiin F showed protective effect at 0.63, 1.3 and 2.5 mg/kg b.w. only in comet assay. We also tested the ability of compounds of C.sylvestris to induce MN and to increase the comet assay tail moment. The experimental design was similar to the DNA protection assay except that in test groups we omitted the CP challenge. We observed increased damage at 50 and 75 mg/kg b.w. of ethanolic extract of C.sylvestris and caseargrewiin F at 3.18 mg/kg b.w. in both the MN test and comet assay. We conclude that ethanolic extract of C. sylvestris and caseargrewiin F can protect cells against DNA damage induced by CP at low concentrations, but at high concentrations these compounds also induce DNA damage.
Resumo:
Extracellular galectin-3 participates in the control of B2 lymphocyte migration and adhesion and of their differentiation into plasma cells. Here, we analyzed the role of galectin-3 in B1-cell physiology and the balance between B1a and B1b lymphocytes in the peritoneal cavity. In galectin-3(-/-) mice, the total number of B1a lymphocytes was lower, while B1b lymphocyte number was higher as compared to wild-type mice. The differentiation of B1a cells into plasma cells was associated with their abnormal adhesion and location on the mesentery. The B220 and CD43, constitutively expressed by B1 lymphocytes, were respectively up- and downregulated in galectin-3(-/-) mice. Mononuclear cells were strongly adhered to the mesenteric membranes of both CD43(-/-) and galectin-3(-/-) mice, but in contrast to CD43(-/-) mice, the accumulation of B1 cells in peritoneal membranes in galectin-3(-/-) mice was accompanied by their functional differentiation into plasma cells. We have shown that in the absence of galectin-3, B1-cell differentiation into plasma cells is favored and the dynamic equilibrium of B1-cell populations in the peritoneum is maintained through a compensatory increase in B1b lymphocytes.
Resumo:
Glioma is the most frequent and malignant primary human brain tumor with dismal prognosis despite multimodal therapy. Resveratrol and quercetin, two structurally related and naturally occurring polyphenols, are proposed to have anticancer effects. We report here that resveratrol and quercetin decreased the cell number in four glioma cell lines but not in rat astrocytes. Low doses of resveratrol (10 mu M) or quercetin (25 mu M) separately had no effect on apoptosis induction, but had a strong effect on caspase 3/7 activation when administered together. Western blot analyses showed that resveratrol (10 mu M) and quercetin (25 mu M) caused a reduction in phosphorylation of Akt, but this reduction was not sufficient by itself to mediate the effects of these polyphenols. Most important, resveratrol and quercetin chronically administered presented a strong synergism in inducing senescence-like growth arrest. These results suggest that the combination of polyphenols can potentialize their antitumoral activity, thereby reducing the therapeutic concentration needed for glioma treatment. (Cancer Sci 2009; 100: 1655-1662).
Resumo:
Urinary bladder cancer is the fourth most common malignancy in the Western world. Transitional cell carcinoma (TCC) is the most common subtype, accounting for about 90% of all bladder cancers. The TP53 gene plays an essential role in the regulation of the cell cycle and apoptosis and therefore contributes to cellular transformation and malignancy; however, little is known about the differential gene expression patterns in human tumors that present with the wild-type or mutated TP53 gene. Therefore, because gene profiling can provide new insights into the molecular biology of bladder cancer, the present study aimed to compare the molecular profiles of bladder cancer cell lines with different TP53 alleles, including the wild type (RT4) and two mutants (5637, with mutations in codons 280 and 72; and T24, a TP53 allele encoding an in-frame deletion of tyrosine 126). Unsupervised hierarchical clustering and gene networks were constructed based on data generated by cDNA microarrays using mRNA from the three cell lines. Differentially expressed genes related to the cell cycle, cell division, cell death, and cell proliferation were observed in the three cell lines. However, the cDNA microarray data did not cluster cell lines based on their TP53 allele. The gene profiles of the RT4 cells were more similar to those of T24 than to those of the 5637 cells. While the deregulation of both the cell cycle and the apoptotic pathways was particularly related to TCC, these alterations were not associated with the TP53 status.
Resumo:
Purpose: To investigate the effects of intrapulpal temperature changes induced by a quartz tungsten halogen (QTH) and a light emitting diode (LED) curing units on the metabolism of odontoblast-like cells. Methods: Thirty-six 0.5 mm-thick dentin discs obtained from sound human teeth were randomly assigned into three groups: QTH, LED and no light (control). After placement of the dentin discs in pulp chamber devices, a thermistor was attached to the pulpal surface of each disc and the light sources were applied on the occlusal surface. After registering the temperature change, odontoblast-like cells MDPC-23 were seeded on the pulpal side of the discs and the curing lights were again applied. Cell metabolism was evaluated by the MTT assay and cell morphology was assessed by SEM. Results: In groups QTH and LED the intrapulpal temperature increased by 6.4 degrees C and 3.4 degrees C, respectively. The difference between both groups was statistically significant (Mann-Whitney; P< 0.05). QTH and LED reduced the cell metabolism by 36.4% and 33.4%, respectively. Regarding the cell metabolism, no statistically significant difference was observed between both groups (Mann-Whitney; P> 0.05). However, when compared to the control, only QTH significantly reduced the cell metabolism (Mann-Whitney; P< 0.05). It was concluded that the irradiance of 0.5 mm-thick human dentin discs with a QTH in comparison to a LED curing unit promoted a higher temperature rise, which propagates through the dentin negatively affecting the metabolism of the underlying cultured pulp cells. (Am J Dent 2009;22:151-156).
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
Some cases of T-cell acute lymphoblastic leukaemia (ALL) express markers found in natural-killer (NK) cells, such as CD56 and CD16. Out of 84 T-cell ALL cases diagnosed at our Institution, CD56 and/or CD16 was detected in 24 (28.5%), which we designated T/NK-ALL group. Clinical features, laboratory characteristics, survival and expression of cytotoxic molecules were compared in T/NK-ALL and T-ALL patients. Significant differences were observed regarding age (24.9 vs. 16.4 years in T/NK-ALL and T-ALL, respectively, P = 0.006) and platelet counts (177 x 10(9)/l vs. 75 x 10(9)/l in T/NK-ALL and T-ALL, respectively, P = 0.03). Immunophenotypic analysis demonstrated that CD34, CD45RA and CD33 were more expressed in T/NK-ALL patients, whereas CD8 and terminal deoxynucleotidyl transferase were more expressed in T-ALL patients (P < 0.05). The mean overall survival (863 vs. 1869 d, P = 0.02) and disease-free survival (855 vs. 2095 d, P = 0.002) were shorter in patients expressing CD56/CD16. However, multivariate analysis identified CD56/CD16 as an independent prognostic factor only for DFS. Cytotoxic molecules were highly expressed in T/NK-ALL compared to T-ALL. Perforin, granzyme B and TIA-1 were detected in 12/17, 4/17 and 7/24 T/NK-ALL patients and in 1/20, 0/20 and 1/20 T-ALL respectively (P < 0.001, P = 0.036 and P = 0.054). Therefore, the presence of CD56/CD16 was associated with distinct clinical features and expression of cytotoxic molecules in the blasts.
Resumo:
The infection with Trypanosoma cruzi leads to a vigorous and apparently uncontrolled inflammatory response in the heart. Although the parasites trigger specific immune response, the infection is not completely cleared out, a phenomenon that in other parasitic infections has been attributed to CD4(+)CD25(+) T cells (Tregs). Then, we examined the role of natural Tregs and its signaling through CD25 and GITR in the resistance against infection with T. cruzi. Mice were treated with mAb against CD25 and GITR and the parasitemia, mortality and heart pathology analyzed. First, we demonstrated that CD4(+)CD25(+)GITR(+)Foxp3(+) T cells migrate to the heart of infected mice. The treatment with anti-CD25 or anti-GITR resulted in increased mortality of these infected animals. Moreover, the treatment with anti-GITR enhanced the myocarditis, with increased migration of CD4(+), CD8(+), and CCR5(+) leukocytes, TNF-alpha production, and tissue parasitism, although it did not change the systemic nitric oxide synthesis. These data showed a limited role for CD25 signaling in controlling the inflammatory response during this protozoan infection. Also, the data suggested that signaling through GITR is determinant to control of the heart inflammation, parasite replication, and host resistance against the infection. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Background: The most primitive leukemic precursor in acute myeloid leukemia (AML) is thought to be the leukemic stem cell (LSC), which retains the properties of self-renewal and high proliferative capacity and quiescence of the hematopoietic stem cell. LSC seems to be immunophenotypically distinct and more resistant to chemotherapy than the more committed blasts. Considering that the multidrug resistance (MDR) constitutive expression may be a barrier to therapy in AML, we have investigated whether various MDR transporters were differentially expressed at the protein level by different leukemic subsets. Methods: The relative expression of the drug-efflux pumps P-gp, MRP, LRP, and BCRP was evaluated by mean fluorescence index (MFI) and the Kolmogorov-Smirnov analysis (D values) in five leukemic subpopulations: CD34(+)CD38(-)CD123(+) (LSCs), CD34(+)CD38(+)CD123(-), CD34(+)CD38(+)CD123(+), CD34(+)CD38(+)CD123(-), and CD34(-) mature cells in 26 bone marrow samples of CD34(+) AML cases. Results: The comparison between the two more immature subsets (LSC versus CD34(+)CD38(-)CD123(-) cells) revealed a higher P-gp, MRP, and LRP expression in LSCs. The comparative analysis between LSCs and subsets of intermediate maturation (CD34(+)CD38(+)) demonstrated the higher BCRP expression in the LSCs. In addition, P-gp expression was also significantly higher in the LSC compared to CD34(+)CD38(+)CD123(-) subpopulation. Finally, the comparative analysis between LSC and the most mature subset (CD34(-)) revealed higher MRP and LRP and lower P-gp expression in the LSCs. Conclusions: Considering the cellular heterogeneity of AML, the higher MDR transporters expression at the most immature, self-renewable, and quiescent LSC population reinforces that MDR is one of the mechanisms responsible for treatment failure. (C) 2008 Clinical Cytometry Society.