994 resultados para Systolic function
Resumo:
The matching function -a key building block in models of labor market frictions- impliesthat the job finding rate depends only on labor market tightness. We estimate such amatching function and find that the relation, although remarkably stable over 1967-2007,broke down spectacularly after 2007. We argue that labor market heterogeneities are notfully captured by the standard matching function, but that a generalized matching functionthat explicitly takes into account worker heterogeneity and market segmentation is fullyconsistent with the behavior of the job finding rate. The standard matching function canbreak down when, as in the Great Recession, the average characteristics of the unemployedchange too much, or when dispersion in labor market conditions -the extent to which somelabor markets fare worse than others- increases too much.
Resumo:
Abstract: The aim of the study was to assess the effects of epidural analgesia on pelvic floor function. Eighty- two primiparous women (group 1, consisting of 41 given an epidural, and group 2 of 41 not given an epidural) were investigated during pregnancy and at 2 and 10 months after delivery by a questionnaire, clinical examination, and assessment of bladder neck behavior, urethral sphincter function and intravaginal/intra-anal pressures. The prevalence of stress urinary incontinence was similar in both groups at 2 months (24% vs. 17%, P = 0.6) and 10 months (22% vs. 7%, P = 0.1), as was the prevalence of decreased sexual vaginal response at 10 months (27% vs. 10%, P= 0.08). Bladder neck behavior, urethral sphincter function and intravaginal and intra-anal pressures showed no significant differences between the two groups. Ten months after spontaneous delivery, there were no significant differences in the prevalence of stress urinary incontinence and decreased sexual vaginal response, or in bladder neck behavior, urethral sphincter function and pelvic floor muscle strength between women who had or had not had epidural analgesia.
Resumo:
CgPdr1p is a Candida glabrata Zn(2)-Cys(6) transcription factor involved in the regulation of the ABC-transporter genes CgCDR1, CgCDR2, and CgSNQ2, which are mediators of azole resistance. Single-point mutations in CgPDR1 are known to increase the expression of at least CgCDR1 and CgCDR2 and thus to contribute to azole resistance of clinical isolates. In this study, we investigated the incidence of CgPDR1 mutations in a large collection of clinical isolates and tested their relevance, not only to azole resistance in vitro and in vivo, but also to virulence. The comparison of CgPDR1 alleles from azole-susceptible and azole-resistant matched isolates enabled the identification of 57 amino acid substitutions, each positioned in distinct CgPDR1 alleles. These substitutions, which could be grouped into three different "hot spots," were gain of function (GOF) mutations since they conferred hyperactivity to CgPdr1p revealed by constitutive high expression of ABC-transporter genes. Interestingly, the major transporters involved in azole resistance (CgCDR1, CgCDR2, and CgSNQ2) were not always coordinately expressed in presence of specific CgPDR1 GOF mutations, thus suggesting that these are rather trans-acting elements (GOF in CgPDR1) than cis-acting elements (promoters) that lead to azole resistance by upregulating specific combinations of ABC-transporter genes. Moreover, C. glabrata isolates complemented with CgPDR1 hyperactive alleles were not only more virulent in mice than those with wild type alleles, but they also gained fitness in the same animal model. The presence of CgPDR1 hyperactive alleles also contributed to fluconazole treatment failure in the mouse model. In conclusion, this study shows for the first time that CgPDR1 mutations are not only responsible for in vitro/in vivo azole resistance but that they can also confer a selective advantage under host conditions.
Resumo:
Using H-2Kd-restricted photoprobe-specific cytotoxic T lymphocyte (CTL) clones, which permit assessment of T cell receptor (TCR)-ligand interactions by TCR photoaffinity labeling, we observed that the efficiency of antigen recognition by CTL was critically dependent on the half-life of TCR-ligand complexes. We show here that antigen recognition by CTL is essentially determined by the frequency of serial TCR engagement, except for very rapid dissociations, which resulted in aberrant TCR signaling and antagonism. Thus agonists that were efficiently recognized exhibited rapid TCR-ligand complex dissociation, and hence a high frequency of serial TCR engagement, whereas the opposite was true for weak agonists. Surprisingly, these differences were largely accounted for by the coreceptor CD8. While it was known that CD8 substantially decreases TCR-ligand complex dissociation, we observed in this study that this effect varied considerably among ligand variants, indicating that epitope modifications can alter the CD8 contribution to TCR-ligand binding, and hence the efficiency of antigen recognition by CTL.
Resumo:
BACKGROUND: A sensitive, feasible and reproducible marker for renal function is necessary to evaluate the clinical efficacy of enzyme replacement therapy (ERT) in Fabry nephropathy. Serum creatinine has some limitations and cystatin C has been proposed, in other nephropathies, as a useful marker of renal function. The use of cystatin C as a marker of glomerular filtration rate (GFR) was investigated in Fabry patients receiving ERT. METHODS: Renal function was evaluated with serum creatinine, serum cystatin C and estimated GFR (through Modification of Diet in Renal Disease [MDRD], Cockcroft-Gault [C&G] and Hoek formulae) in 21 Fabry patients receiving ERT with agalsidase alfa for 3 years and in 13 Fabry patients receiving agalsidase alfa for 4 years. RESULTS: During years of ERT while serum creatinine remained stable, cystatin C values showed a significant, increasing trend right from the first year of ERT. CONCLUSIONS: In Fabry disease, cystatin C is a sensitive and reliable marker of renal function, and it should be taken into account when evaluating GFR trends during ERT.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
OBJECTIVE: Atrial fibrillation is a very common heart arrhythmia, associated with a five-fold increase in the risk of embolic strokes. Treatment strategies encompass palliative drugs or surgical procedures all of which can restore sinus rhythm. Unfortunately, atria often fail to recover their mechanical function and patients therefore require lifelong anticoagulation therapy. A motorless volume displacing device (Atripump) based on artificial muscle technology, positioned on the external surface of atrium could avoid the need of oral anticoagulation and its haemorrhagic complications. An animal study was conducted in order to assess the haemodynamic effects that such a pump could provide. METHODS: Atripump is a dome-shape siliconecoated nitinol actuator sewn on the external surface of the atrium. It is driven by a pacemaker-like control unit. Five non-anticoagulated sheep were selected for this experiment. The right atrium was surgically exposed, the device sutured and connected. Haemodynamic parameters and intracardiac ultrasound (ICUS) data were recorded in each animal and under three conditions; baseline; atrial fibrillation (AF); atripump assisted AF (aaAF). RESULTS: In two animals, after 20 min of AF, small thrombi appeared in the right atrial appendix and were washed out once the pump was turned on. Assistance also enhanced atrial ejection fraction. 31% baseline; 5% during AF; 20% under aaAF. Right atrial systolic surfaces (cm2) were; 5.2 +/- 0.3 baseline; 6.2 +/- 0.1 AF; 5.4 +/- 0.3 aaAF. CONCLUSION: This compact and reliable pump seems to restore the atrial "kick" and prevents embolic events. It could avoid long-term anticoagulation therapy and open new hopes in the care of end-stage heart failure.
Resumo:
The time-lag between coronary occlusion and irreversible damage to the myocardium is ill-defined in man. In 10 patients the changes in left ventricular function have been studied after coronary occlusion during diagnostic or therapeutic cardiac catheterization of 1-2 hours' duration. Revascularization was achieved either surgically or through intracoronary streptokinase infusion. The interval between occlusion and onset of extracorporal circulation or reopening was 61 to 119 minutes. Despite enzyme elevation (CPK, CK-MB, SGOT) and appearance of Q-waves in 5 patients, no significant alteration of left ventricular function was noted on repeat cardiac catheterization 10 to 230 days after the accident. These observations, suggest that coronary occlusion of 1-2 hours' duration fails to produce significant irreversible damage to the myocardium despite electrocardiographic and enzymatic signs of myocardial infarction.
Resumo:
BACKGROUND: Because traditional nonsteroidal antiinflammatory drugs are associated with increased risk for acute cardiovascular events, current guidelines recommend acetaminophen as the first-line analgesic of choice on the assumption of its greater cardiovascular safety. Data from randomized clinical trials prospectively addressing cardiovascular safety of acetaminophen, however, are still lacking, particularly in patients at increased cardiovascular risk. Hence, the aim of this study was to evaluate the safety of acetaminophen in patients with coronary artery disease. METHODS AND RESULTS: The 33 patients with coronary artery disease included in this randomized, double-blind, placebo-controlled, crossover study received acetaminophen (1 g TID) on top of standard cardiovascular therapy for 2 weeks. Ambulatory blood pressure, heart rate, endothelium-dependent and -independent vasodilatation, platelet function, endothelial progenitor cells, markers of the renin-angiotensin system, inflammation, and oxidative stress were determined at baseline and after each treatment period. Treatment with acetaminophen resulted in a significant increase in mean systolic (from 122.4±11.9 to 125.3±12.0 mm Hg P=0.02 versus placebo) and diastolic (from 73.2±6.9 to 75.4±7.9 mm Hg P=0.02 versus placebo) ambulatory blood pressures. On the other hand, heart rate, endothelial function, early endothelial progenitor cells, and platelet function did not change. CONCLUSIONS: This study demonstrates for the first time that acetaminophen induces a significant increase in ambulatory blood pressure in patients with coronary artery disease. Thus, the use of acetaminophen should be evaluated as rigorously as traditional nonsteroidal antiinflammatory drugs and cyclooxygenase-2 inhibitors, particularly in patients at increased cardiovascular risk. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00534651.
Resumo:
Purpose: To examine the possible role of H+-activated acid-sensing ion channels (ASICs) in pain perception we characterized their expression in bladder dome biopsies of Bladder Pain Syndrome (BPS) patients and controls, in cultured human urothelium and in urothelial TEU-2 cells.Materials and Methods: Cold cut biopsies from the bladder dome were obtained in 8 asymptomatic controls and 28 patients with symptoms of BPS. ASIC expression was analyzed by QPCR and immunofluorescence. The channel function was measured by electrophysiology.Results: ASIC1a, ASIC2a and ASIC3 mRNAs were detected in human bladder. Similar amounts of ASIC1a and -3 were detected in detrusor smooth muscle, whereas in urothelium ASIC3 levels were higher than -1a. ASIC2a mRNA levels were lower than either -1a or -3 in both layers. ASIC currents were measured in TEU-2 cells and in primary cultures of human urothelium, and ASIC expression was confirmed by QPCR. Differentiation of TEU-2 cells caused an up-regulation of ASIC2a and ASIC3, and a down-regulation of ASIC1a mRNAs. BPS patients showed an up-regulation of ASIC2a and -3 mRNA, whereas ASIC1a remained unchanged. In contrast, the mRNA levels of TRPV1 were down-regulated during BPS. All differences were statistically significant (p<0.05)Conclusions: Several different ASIC subunits are expressed in human bladder and TEU-2 cells, where their levels are regulated during urothelial differentiation. An up-regulation of ASIC2a and -3 in BPS suggests their involvement in increased pain and hyperalgesia. A down-regulation of TRPV1 mRNA levels might indicate a different regulatory mechanism, controlling its expression in human bladder.
Resumo:
AIM: Fabry disease is considered primarily as a progressive small vessel disease, with ischaemic degenerative lesions involving the kidneys, brain and heart. Macrovascular involvement in male patients includes an accelerated wall hypertrophy of the radial artery and a thickening of the intima-media of the common carotid artery. The aim of this study is to evaluate the prevalence and severity of carotid artery atherosclerosis in hemizygous and heterozygous patients with Fabry disease, compared with a matched control population. METHODS: The common carotid artery intima-media thickness (IMT) of 53 patients with Fabry disease (24 men, 29 women) was measured by high-definition ultrasonography, and the presence or absence of atherosclerotic plaques reported. Results were compared with those of 120 age-matched healthy individuals (83 men, 37 women). RESULTS: The common carotid artery IMT was increased to the same extent in male and female patients with Fabry disease (706+/-211 microm and 749+/-395 microm, respectively) compared with that of the control population (614+/-113 microm). In the Fabry population, IMT did not correlate with either systolic blood pressure or with renal function (plasma creatinine). In the control population, only systolic blood pressure was positively and significantly correlated with IMT. Atherosclerotic plaques in the common carotid artery were not observed in any patient with Fabry disease, whereas 34% of the control population had carotid artery plaques, as evidenced by focal non-homogeneous intima-media thickening greater than 1.2 mm. CONCLUSION: This study presents evidence of a major increase in common carotid artery IMT, both in hemizygous and heterozygous patients with Fabry disease, in the absence of focal atherosclerotic plaques. These results suggest that the conduit arteries may be protected from atherosclerosis in Fabry disease.
Resumo:
Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4¿dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Resumo:
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.
Resumo:
Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.