988 resultados para Sustainability measurement
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
This introductory chapter sets the scene for the book, providing an overview of sustainability in the built environment. With a bias towards buildings and the urban environment, it illustrates the range of issues that impinge upon global carbon reduction and the mechanisms available to help bring about change. Climate change, and its impact on built environment, is briefly introduced and sustainability in the built environment and associated factors are described. The specific topics relating to sustainable design and management of the built environment, including policy and assessment, planning, energy, water and waste, technology, supply and demand, occupants’ behaviour and management have been highlighted. This chapter emphasises the importance of a systemic approach in delivering a sustainable built environment.
Resumo:
The construction sector has a major role to play in delivering the transition to a low carbon economy and in contributing to sustainable development; however, integrating sustainability into everyday business remains a major challenge for the sector. This research explores the experience of three large construction and engineering consultancy firms in mainstreaming sustainability. The aim of the paper is to identify and explain variations in firm level strategies for mainstreaming sustainability. The three cases vary in the way in which sustainability is ramed – as a problem of risk, business opportunity or culture – and in its location within the firm. The research postulates that the mainstreaming of sustainability is not the uniform linear process often articulated in theories of strategic change and management, but varies with the dominant organisational culture and history of each firm. he paper concludes with a reflection on the implications of this analysis for management theories and for firm level strategies.
Resumo:
Methods for assessing the sustainability of agricultural systems do often not fully (i) take into account the multifunctionality of agriculture, (ii) include multidimensionality, (iii) utilize and implement the assessment knowledge and (iv) identify conflicting goals and trade-offs. This chapter reviews seven recently developed multidisciplinary indicator-based assessment methods with respect to their contribution to these shortcomings. All approaches include (1) normative aspects such as goal setting, (2) systemic aspects such as a specification of scale of analysis and (3) a reproducible structure of the approach. The approaches can be categorized into three typologies: first, top-down farm assessments, which focus on field or farm assessment; second, top-down regional assessments, which assess the on-farm and the regional effects; and third, bottom-up, integrated participatory or transdisciplinary approaches, which focus on a regional scale. Our analysis shows that the bottom-up, integrated participatory or transdisciplinary approaches seem to better overcome the four shortcomings mentioned above.
Resumo:
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Resumo:
This paper investigates the relationship of the project management in Private Finance Initiative (PFI) and sustainability. A live PFI project is selected as a case study, where contract review and monitoring on project management are carried out to evaluate the sustainability of project management. The PFI procurement shows great advantages in increased contractual responsibilities of the contractor in sustainable construction, and also in practicing sustainability in project management. Six main sustainable attributes of the project management are selected to evaluate the sustainability of project management in the PFI project. The project management process in the case study is closely monitored in order to verify how the PFI project promotes sustainability in practice. The project management in the different stages of the PFI project, including tendering, design, construction and operation, contributes to the six sustainable attributes in different ways. The project management in PFI project paid more attention in sustainable development during its whole process. As the private sector is responsible to the whole life of the building project, the project manager has to consider the long-term benefits during the management process. The government should take advantages of PFI project management in practicing sustainability therefore to promote sustainable development of the national infrastructure services.
Resumo:
This paper discusses key contextual differences and similarities in a comparative study on brownfield regeneration in England and Japan. Over the last decade, the regeneration of large-scale ‘flagship’ projects has been a primary focus in England, and previous research has discussed policy issues and key barriers at these sites. However, further research is required to explore specific barriers associated with problematic ‘hardcore’ sites suffering from long-term dereliction due to site-specific obstacles such as contamination and fragmented ownership. In comparison with England, brownfield regeneration is a relatively new urban agenda in Japan. Japan has less experience in terms of promoting redevelopment of brownfield sites at national level and the specific issues of ‘hardcore’ sites have been under-researched. The paper reviews and highlights important issues in comparing the definitions, national policy frameworks and the current stock of brownfields.
Resumo:
It has long been supposed that preference judgments between sets of to-be-considered possibilities are made by means of initially winnowing down the most promising-looking alternatives to form smaller “consideration sets” (Howard, 1963; Wright & Barbour, 1977). In preference choices with >2 options, it is standard to assume that a “consideration set”, based upon some simple criterion, is established to reduce the options available. Inferential judgments, in contrast, have more frequently been investigated in situations in which only two possibilities need to be considered (e.g., which of these two cities is the larger?) Proponents of the “fast and frugal” approach to decision-making suggest that such judgments are also made on the basis of limited, simple criteria. For example, if only one of two cities is recognized and the task is to judge which city has the larger population, the recognition heuristic states that the recognized city should be selected. A multinomial processing tree model is outlined which provides the basis for estimating the extent to which recognition is used as a criterion in establishing a consideration set for inferential judgments between three possible options.
Resumo:
The effect of increasing salinity and freezing stress singly and in combination on a range of chlorophyll fluorescence parameters in foliar tissue of six Crataegus genotypes was examined. In general, increased stress reduced fluorescence values and absorption, trapping and electron transport energy fluxes per leaf reaction center and cross section, with decreased sigmoidicity of OJIP curves as a measure of the plastoquinone pool, reflecting decreased energy fluxes. Based on percentage reduction in a performance index from controls compared to stress-treated values, plants were ranked in order of tolerant > intermediate > sensitive. Use of this PIp ranking criteria enabled the distinguishing of marked differences in foliar salt/freezing hardiness between the Crataegus species used. Interpretation of the photochemical data showed that salinity and freezing affects both the acceptor and donor side of Photosystem II, while OJIP observations provided information regarding structural and functional changes in the leaf photosynthetic apparatus of the test species. It is concluded that chlorophyll fluorescence offers a rapid screening technique for assessing foliar salinity and freezing tolerance of woody perennials
Resumo:
This paper discusses the notion of ‘responsible tourism’ and its current use within the tourism literature. We argue that the concept as used currently means everything and therefore adds nothing to the conceptual terrain of tourism trends and nomenclatures. We then introduce our own understanding of the concept arguing that while responsible tourism is linked to sustainability initiatives such as alternative tourism, ecotourism, ethical tourism, green tourism, soft tourism, pro-poor tourism, geo-tourism, integrated tourism, community-based tourism, etc it also demarcates an analytical realm of its own. We suggest that the practical use of the term in areas where it has been adopted (such as South Africa and Kerala for instance) suggests a rather restricted use. We identified this realm as the tourism sector-specific manifestation of the corporate social responsibility (CSR) agenda. Following Flyvberg's [(2006). Five misunderstandings about case-study research. Qualitative Inquiry, 12(2), 219–245] call for exemplars and paradigmatic case studies to advance knowledge in a particular domain, the responsible tourism initiative in Kumarakon, Kerala, is presented. Discussion of the case study traces the particular governance context of Kerala and the position of tourism in the state economy. The responsible tourism initiatives at the state level and local level are then described highlighting the ‘how’ of the implementation and the impact that it has produced. Generic, non-prescriptive principles that could be said to be necessary in some form for the successful translation of responsible tourism principles to practices are then identified. Such an approach is contrasted with one that places faith in the voluntary adoption of ‘responsible’ practices by the private sector on its own. It is argued that responsible tourism can make a contribution to practice provided the conceptual terrain is delineated against other forms of tourism and if research within the terrain can unpack the particular forms of challenges that are thrown up by the delineation itself.
Resumo:
Insulin-like peptide 3 (INSL3), a major product of testicular Leydig cells, is also expressed by the ovary but its functional role remains poorly understood. Here, we quantified expression of INSL3 and its receptor RXFP2 in theca interna (TIC) and granulosa (GC) compartments of developing bovine antral follicles and in corpora lutea (CL). INSL3 and RXFP2 mRNA levels were much higher in TIC than GC and increased progressively during follicle maturation with INSL3 peaking in large (11-18mm) estrogen-active follicles and RXFP2 peaking in 9-10mm follicles before declining in larger (11-18mm) follicles. Expression of both INSL3 and RXFP2 in CL was much lower than in TIC. In situ hybridization and immunohistochemistry confirmed abundant expression of INSL3 mRNA and protein in TIC. These observations indicate follicular TIC rather than CL as the primary site of both INSL3 production and action, implying a predominantly auto-/paracrine role in TIC. To corroborate the above findings, we showed that in vitro exposure of TIC to a luteinizing concentration of LH greatly attenuated expression of both INSL3 and its receptor while increasing progesterone secretion and expression of STAR and CYP11A1. Moreover, in vivo, a significant cyclic variation in plasma INSL3 was observed during synchronized estrous cycles. INSL3 and estradiol-17β followed a similar pattern, both increasing after luteolysis, before falling sharply after the LH surge. Thus, theca-derived INSL3, likely from the dominant pre-ovulatory follicle, is detectable in peripheral blood of cattle and expression is down-regulated during luteinisation induced by the pre-ovulatory LH surge. Collectively, these findings underscore the likely role of INSL3 as an important intrafollicular modulator of TIC function/steroidogenesis, whilst raising doubts about its potential contribution to CL function.
Resumo:
In the UK and elsewhere the use of the term ‘sustainable brownfield regeneration’ has resulted from the interweaving of two key policy themes, comprising ‘sustainable development’ and ‘brownfield regeneration’. This paper provides a critical overview of brownfield policy within the context of the emerging sustainable development agenda in the UK, and examines the development industry's role and attitudes towards key aspects of sustainable development and brownfield regeneration. The paper analyses results from a survey of commercial and residential developers carried out in mid‐2004, underpinned by structured interviews with eleven developers in 2004–2005, which form part of a two‐and‐half‐year EPSRC‐funded project. The results suggest that despite the increasing focus on sustainability in government policy, the development industry seems ill at ease with precisely how sustainable development can be implemented in brownfield schemes. These and other findings, relating to sustainability issues (including the impact of climate change on future brownfield development), have important ramifications for brownfield regeneration policy in the UK. In particular, the research highlights the need for better metrics and benchmarks to be developed to measure ‘sustainable brownfield regeneration’. There also needs to be greater awareness and understanding of alternative clean‐up technologies to ‘dig and dump’.
Resumo:
We investigate for 26 OECD economies whether their current account imbalances to GDP are driven by stochastic trends. Regarding bounded stationarity as the more natural counterpart of sustainability, results from Phillips–Perron tests for unit root and bounded unit root processes are contrasted. While the former hint at stationarity of current account imbalances for 12 economies, the latter indicate bounded stationarity for only six economies. Through panel-based test statistics, current account imbalances are diagnosed as bounded non-stationary. Thus, (spurious) rejections of the unit root hypothesis might be due to the existence of bounds reflecting hidden policy controls or financial crises.