993 resultados para Surrounding bone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trabecular bone score (TBS, Med-Imaps, Pessac, France) is an index of bone microarchitecture texture extracted from anteroposterior dual-energy X-ray absorptiometry images of the spine. Previous studies have documented the ability of TBS of the spine to differentiate between women with and without fractures among age- and areal bone mineral density (aBMD)-matched controls, as well as to predict future fractures. In this cross-sectional analysis of data collected from 3 geographically dispersed facilities in the United States, we investigated age-related changes in the microarchitecture of lumbar vertebrae as assessed by TBS in a cohort of non-Hispanic US white American women. All subjects were 30 yr of age and older and had an L1-L4aBMDZ-score within ±2 SD of the population mean. Individuals were excluded if they had fractures, were on any osteoporosis treatment, or had any illness that would be expected to impact bone metabolism. All data were extracted from Prodigy dual-energy X-ray absorptiometry devices (GE-Lunar, Madison, WI). Cross-calibrations between the 3 participating centers were performed for TBS and aBMD. aBMD and TBS were evaluated for spine L1-L4 but also for all other possible vertebral combinations. To validate the cohort, a comparison between the aBMD normative data of our cohort and US non-Hispanic white Lunar data provided by the manufacturer was performed. A database of 619 non-Hispanic US white women, ages 30-90 yr, was created. aBMD normative data obtained from this cohort were not statistically different from the non-Hispanic US white Lunar normative data provided by the manufacturer (p = 0.30). This outcome thereby indirectly validates our cohort. TBS values at L1-L4 were weakly inversely correlated with body mass index (r = -0.17) and weight (r = -0.16) and not correlated with height. TBS values for all lumbar vertebral combinations decreased significantly with age. There was a linear decrease of 16.0% (-2.47 T-score) in TBS at L1-L4 between 45 and 90 yr of age (vs. -2.34 for aBMD). Microarchitectural loss rate increased after age 65 by 50% (-0.004 to -0.006). Similar results were obtained for other combinations of lumbar vertebra. TBS, an index of bone microarchitectural texture, decreases with advancing age in non-Hispanic US white women. Little change in TBS is observed between ages 30 and 45. Thereafter, a progressive decrease is observed with advancing age. The changes we observed in these American women are similar to that previously reported for a French population of white women (r(2) > 0.99). This reference database will facilitate the use of TBS to assess bone microarchitectural deterioration in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone defects in revision knee arthroplasty are often located in load-bearing regions. The goal of this study was to determine whether a physiologic load could be used as an in situ osteogenic signal to the scaffolds filling the bone defects. In order to answer this question, we proposed a novel translation procedure having four steps: (1) determining the mechanical stimulus using finite element method, (2) designing an animal study to measure bone formation spatially and temporally using micro-CT imaging in the scaffold subjected to the estimated mechanical stimulus, (3) identifying bone formation parameters for the loaded and non-loaded cases appearing in a recently developed mathematical model for bone formation in the scaffold and (4) estimating the stiffness and the bone formation in the bone-scaffold construct. With this procedure, we estimated that after 3 years mechanical stimulation increases the bone volume fraction and the stiffness of scaffold by 1.5- and 2.7-fold, respectively, compared to a non-loaded situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial angiogenesis induction with vascular growth factors constitutes a potential strategy for patients whose coronary artery disease is refractory to conventional treatment. The importance of angiogenesis in bone formation has led to the development of growth factors derived from bovine bone protein. Twelve pigs (mean weight, 73 +/- 3 kg) were chosen for the study. In the first group (n = 6, growth factor group) five 100 micrograms boluses of growth factors derived from bovine bone protein, diluted in Povidone 5%, were injected in the lateral wall of the left ventricle. In the second group (n = 6, control group), the same operation was performed but only the diluting agent was injected. All the animals were sacrificed after 28 days and the vascular density of the left lateral wall (expressed as the number of vascular structures per mm2) as well as the area of blood vessel profiles per myocardial area analysed were determined histologically with a computerised system. The growth factor group had a capillary density which was significantly higher than that of the control group: 12.6 +/- 0.9/mm2 vs 4.8 +/- 0.5/mm2 (p < 0.01). The same holds true for the arteriolar density: 1 +/- 0.2/mm2 vs 0.3 +/- 0.1/mm2 (p < 0.01). The surface ratios of blood vessel profiles per myocardial area were 4900 +/- 800 micron 2/mm2 and 1550 +/- 400 micron 2/mm2 (p < 0.01) respectively. In this experimental model, bovine bone protein derived growth factors induce a significant neovascularisation in healthy myocardium, and appear therefore as promising candidates for therapeutic angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different cell sources for bone tissue engineering are reviewed. In particular, adult cell source strategies have been based on the implantation of unfractionated fresh bone marrow; purified, culture expanded mesenchymal stem cells, differentiated osteoblasts, or cells that have been modified genetically to express rhBMP. Several limiting factors are mentioned for these strategies such as low number of available cells or possible immunological reaction of the host. Foetal bone cells are presented as an alternative solution and review of actual treatments using these cells is presented. Finally, foetal cells used specifically for bone tissue engineering are characterised and potentially interesting therapeutic options are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED: Trabecular bone score (TBS) seems to provide additive value on BMD to identify individuals with prevalent fractures in T1D. TBS did not significantly differ between T1D patients and healthy controls, but TBS and HbA1c were independently associated with prevalent fractures in T1D. A TBS cutoff <1.42 reflected prevalent fractures with 91.7 % sensitivity and 43.2 % specificity. INTRODUCTION: Type 1 diabetes (T1D) increases the risk of osteoporotic fractures. TBS was recently proposed as an indirect measure of bone microarchitecture. This study aimed at investigating the TBS in T1D patients and healthy controls. Associations with prevalent fractures were tested. METHODS: One hundred nineteen T1D patients (59 males, 60 premenopausal females; mean age 43.4 ± 8.9 years) and 68 healthy controls matched for gender, age, and body mass index (BMI) were analyzed. The TBS was calculated in the lumbar region, based on two-dimensional (2D) projections of DXA assessments. RESULTS: TBS was 1.357 ± 0.129 in T1D patients and 1.389 ± 0.085 in controls (p = 0.075). T1D patients with prevalent fractures (n = 24) had a significantly lower TBS than T1D patients without fractures (1.309 ± 0.125 versus 1.370 ± 0.127, p = 0.04). The presence of fractures in T1D was associated with lower TBS (odds ratio = 0.024, 95 % confidence interval (CI) = 0.001-0.875; p = 0.042) but not with age or BMI. TBS and HbA1c were independently associated with fractures. The area-under-the curve (AUC) of TBS was similar to that of total hip BMD in discriminating T1D patients with or without prevalent fractures. In this set-up, a TBS cutoff <1.42 discriminated the presence of fractures with a sensitivity of 91.7 % and a specificity of 43.2 %. CONCLUSIONS: TBS values are lower in T1D patients with prevalent fractures, suggesting an alteration of bone strength in this subgroup of patients. Reliable TBS cutoffs for the prediction of fracture risk in T1D need to be determined in larger prospective studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the issues surrounding the transition into the teaching profession by specifically focusing on teacher induction and mentoring issues while explicitly addressing matters of concern by secondary music teachers in a large suburban school board in southern Ontario. Participants included beginning teachers with fewer than 5 years of teaching, mid career teachers with between 6 and 15 years of instruction, and experienced teachers with more than 16 years of practice. The ' processes of mentoring and inducting new teachers within the board were examined, along with their relationships between proteges, mentors, and administrators. Further, internal and external programs specifically designed and implemented for newer music teachers were scrutinized and discussed. An analysis of key documents and literature on the subject was performed, and data were collected through 16 personal interviews. The findings suggest that although the necessity of mentoring and induction processes has begun to be recognized, there exists a fundamental relationship between mentoring and induction and the effect of the professional attachments to mentoring; the institutional and administrative supports that are enabled; and essential processes and practices between mentors and proteges. Together these three arms combine to support successfiil induction and mentoring initiatives that will help ease the transition into teaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Background: Previous studies have implied that weight-bearing, intense and prolonged physical activities optimize bone accretion during the grow^ing years. The majority of past inquiries have used dual-energy X-ray absorptiometry (DXA) to examine bone strength and hand-wrist radiography to determine skeletal maturity in children. Recently, quantitative ultrasound (QUS) technologies have been developed to examine bone properties and skeletal maturity in a safe, noninvasive and cost-effective manner. Objective: The purpose of this study was to compare bone properties and skeletal maturity in competitive male child and adolescent athletes with minimallyactive, age-matched controls, using QUS technology. >. Methods: In total, 224 males were included in the study. The 115 pre-pubertal boys aged 10-12 years consisted of control, minimally-active children (n=34), soccer players (n=26), gymnasts (n=25) and hockey players (n=30). In addition, the 109 late-pubertal boys aged 14-16 years consisted of control, minimally-active adolescents (n=31), soccer players (n=30), gymnasts (n=17) and hockey players (n=31). The athletic groups were elite level players that predominantly trained year-round. Physical activity, nutrition and sports participation were assessed with various questionnaires. Anthropometries, such as height, weight and relative body fat percentage (BF%) were assessed using standard measures. Skeletal strength and age were evaluated using bone QUS. Lastly, salivary testosterone (sT) concentration was measured using Radioimmunoassay (RIA). Results: Within each age group, there were no significant differences between the activity groups in age and pubertal stage. An age effect was apparent in all variables, as expected. A sport effect was noted in all physical characteristics: the child and adolescent gymnasts were shorter and lighter than other sports groups. Adiposity was greater in the controls and in the hockey players. All child subjects were pubertal stage (fanner) I or II, while adolescent subjects were pubertal stage IV or V. There were no differences in daily energy and mineral intakes between sports groups. In both age groups, gymnasts had a higher training volume than other athletic groups. Bone speed of sound (50s) was higher in adolescents compared with the children. Gymnasts had signifieantly higher radial 50S than controls, hockey and soccer players in both age cohorts. Hockey athletes also had higher radial 50S than controls and soccer players in the child and adolescent groups, respectiyely. Child gymnasts and soccer players had greater tibial 50S compared with the hockey players and control groups. Likewise, adolescent gymnasts and soccer players had higher tibial SoS compared with the control group. No interaction was apparent between age and type of activity in any of the bone measures. » Lastly, maturity as assessed by sT and secondary sex characteristics (Tanner stage) was not different between sports group within each age group. Despite the similarity in chronological age, androgen levels and sexual maturity, differences between activity groups were noted in skeletal maturity. In the younger group, hockey players had the highest bone age while the soccer players had the lowest bone age. In the adolescent group, gymnasts and hockey players were characterized by higher skeletal maturity compared with controls. An interaction between the age and sport type effects was apparent in skeletal maturity, reflecting the fact that among the children, the soccer players were significantly less mature than the rest of the groups, while in the adolescents, the controls were the least skeletally mature. Summary and Conclusions: In summary, radial and tibial SOS are enhanced by the unique loading pattern in each sport (i.e, upper and lower extremities in gymnastics, lower extremities in soccer), with no cumulative effect between childhood and adolescence. That is, the effect of sport participation on bone SOS was apparent already among the young athletes. Enhanced bone properties among athletes of specific sports suggest that participation in these sports can improve bone strength and potential bone health.