996 resultados para Sugarcane biomass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to evaluate the chemical composition and in vitro digestibility of sugarcane hydrolysed with increasing doses of calcium oxide and varying air exposure times. A completely randomised, split plot design was used; the doses were allocated to the plots, and the air exposure times were allocated to the subplots, with four repetitions. The data underwent analysis of variance and were laid out according to the effect of the treatment on the components of polynomial regressions, and evaluated at the 5% probability. The increase in the dosage negatively affected the quantities of neutral-detergent fibre (NDF), acid-detergent fibre (ADF), lignin (LIG), total carbohydrates (TC), cellulose (CEL), crude protein (CP), and ether extract (EE); and positively affected the quantities of non-fibrous carbohydrates (NFC) and mineral matter (MM). The addition of calcium oxide improved the in vitro digestible dry matter (IVDMD) coefficients and was able to keep up to 72 hours. The in vitro digestibility of the neutral-detergent fibre (IVDNDF) and of the acid-detergent fibre (IVDADF) coefficients decreased when calcium oxide was added. Calcium oxide has the ability to hydrolyse the fibrous fraction and conserve chopped sugarcane. Doses of 0.5 and 1.0% lime exhibited similar results to those achieved at higher doses; therefore, higher doses are not required in the hydrolyses of sugarcane. Over time, the sugarcane deteriorates, but this deterioration is reduced by the addition of calcium oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to assess families and highlight the superior progenies of sugarcane originating from 38 biparental crosses for the following attributes: tons of cane per hectare (TCH), tons of biomass per hectare (TBIOH), brix (% cane juice), fiber content, purity, pol and total recoverable sugar (TRS). The data were analyzed by mixed model REML / BLUP in the REML (Restricted Maximum Likelihood) allowed us to estimate genetic parameters and BLUP (best linear unbiased prediction) to predict the additive and genotypic values. The best family for the attributes TCH and TBIOH was 41, whose parents are cultivars IACSP022019 x CTC9. In individual selection for TCH, the plant number 3 of Block 2, the crossing 78, showed the best results. To TBIOH the plant number 33, Block 1, family 41, showed the best results. Families 40, 41, 43, 68, 69, 79, 91, 92 and 147, were higher for the variables brix, pol, purity, and ATR, where as 85 families, 147, 148, 149, 161, 163, 177, 178, 179, and 183 were higher for fiber. The family 147 whose parents are IACSP042286 x IACSP963055, showed three progenies ranked among the top ten for both brix, and for fiber, which identifies the combination as a potential source of progenies for bioenergy production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis step for sugar production in biorefineries is crucial for the sequential processes involved and cellulases cocktails behave differently according to the pretreatment employed. In this study, the application of the cellulases cocktail produced by the fungus Myceliophthora thermophila JCP1-4 was studied on the saccharification of sugarcane bagasse pretreated by ozonolysis and thermic ferric nitrate (TFN), and the results were compared with commercial enzymes (Novozymes Celluclast 1.5L, Novozym 188). The fungal cellulases cocktail hold an activity of FPU:β-glucosidase of 1:4(U/mL); time, temperature, FPU by g of cellulose load and percentage of dry matter (DM) were studied. The analysis of central composite design of TFN pretreated showed that fungal cellulases works better in DM values of 3–3.5% (4.5% for commercial), temperatures higher than 50 °C (<45 °C for commercial) and 15FPU for both; commercial enzymes yielded 7.78 g/L of reducing sugars and the fungal enzymes 5.42 g/L. With the ozone pretreated, the fungal enzymes presented a higher thermostability with faster kinects, being able to produce 5.56 g/L of reducing sugars (60 °C, 8 h), against 5.20 g/L for commercial enzymes (50 °C, 24 h), (10FPU, 3%DM for both). The FPU derivate analysis revels better yields with 7.5FPU, and the increase of DM to 7.5% resulted 13.28 g/L of reducing sugars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was conducted to determine the chemical composition and apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen balance (AMEn) values of corn, soybean meal (SBM), soybean oil (SO) and sugarcane yeast (SY) (Saccharomyces cerevisiae). A metabolism trial was performed with 120 Dekalb White laying hens at 65 weeks of age, using the method of total excreta collection. Birds were housed in metabolism cages and distributed according to a completely randomized design into five treatments with, six replicates of four birds each. The experimental period consisted of four days of adaptation and four days of excreta collection. The experimental diets included: a reference diet based on corn and SBM and four test diets containing 40% corn, 30% SBM, 10% SO or 30 % SY. The chemical compositions of the tested ingredients, expressed on "as-is" basis were: 86.9, 87.29, 87.32 and 99.5% dry matter; and 3.51, 2.08, 99.31 and 0.03 ether extract for corn, SBM, SO and SY, respectively. Corn, SBM, and SO presented 7.33, 43.61 and 24.64% crude protein, and 0.58, 5.07 and 6.77% ash, respectively; and crude fiber contents of corn and SBM were, respectively, 2.24% and 3.56%. The following AME and AMEn (kcal/kg dry matter) values were obtained: 3,801 and 3,760 kcal/kg for corn, 2,640 and 2,557 kcal/kg for SBM, 8,952 and 8,866 kcal/kg for SO, and 1,023 and 925 kcal/kg for sugarcane yeast, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peerreviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha 1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 +/- 77), temperate forest (n = 12, FC = 58 +/- 72), boreal forest (n = 16, FC = 35 +/- 24), pasture (n = 4, FC = 28 +/- 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 +/- 9.0), chaparral (n = 3, FC = 27 +/- 19), tropical peatland (n = 4, FC = 314 +/- 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e. g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole biomes. Comparing the compiled FC values with co-located Global Fire Emissions Database version 3 (GFED3) FC indicates that modeling studies that aim to represent variability in FC also within biomes, still require improvements as they have difficulty in representing the dynamics governing FC.