962 resultados para Subtropical cyclones
Resumo:
Stenotaphrum secundatum (Walter) Kuntze, known as "St Augustinegrass" in the USA and "buffalo grass" in Australia, is a widely used turfgrass species in subtropical and warm temperate regions of the world. Throughout its range, S. secundatum encompasses a great deal of genetic diversity, which can be exploited in future breeding programs. To understand better the range of genetic variation in Australia, morphological-agronomic classification and DNA profiling were used to characterize and group 17 commercial cultivars and 18 naturalized genotypes collected from across Australia. Historically, there have been two main sources of S. secundatum in Austalia: one a reputedly sterile triploid race (the so-called Cape deme) from South Africa now represented by the Australian Common group naturalized in all Australian states; and the other a "normal" fertile diploid race naturalized north from Sydney along the NSW coast, which is referred to here as the Australian Commercial group because it has been the source of most of the new cultivars recently developed in Australia. Over the past 30 years, some US cultivars have also been introduced and commercialized; these are again "normal" fertile diploids, but from a group distinclty different from the Australian Commercial genotypes as shown by both DNA analysis and grouping based on 28 morphological-agronomic characteristics. The implications for future breeding within S. secundatum in Australia are discussed.
Resumo:
Spotted gum (Corymbia citriodora subsp. variegata and C. maculata) is a valuable source of commercial timber and suitable for a wide range of different soil types in eastern Australia. The main biological constraint to further expansion of spotted gum plantations is Quambalaria shoot blight caused by the fungus Quambalaria pitereka. Surveys conducted to evaluate the impact of Quambalaria shoot blight have shown that the disease is present in all spotted gum plantations and on a range of Corymbia species and hybrids in subtropical and tropical regions surveyed in eastern Australia. More recently, Q. eucalypti has also been identified from a range of Eucalyptus species in these regions. Both pathogens have also been found associated with foliage blight and die-back of amenity trees and Q. pitereka in native stands of Corymbia species, which is the probable initial infection source for plantations. Infection by Q. pitereka commonly results in the repeated destruction of the growing tips and the subsequent formation of a bushy crown or death of trees in severe cases. In comparison, Q. eucalypti causes small, limited lesions and has in some cases been associated with insect feeding. It has not been recorded as causing severe shoot and stem blight. A better understanding of factors influencing disease development and host-pathogen interactions is essential in the development of a disease management strategy for these poorly understood but important pathogens in the rapidly expanding eucalypt (Corymbia and Eucalyptus spp.) plantation industry in subtropical and tropical eastern Australia.
Resumo:
This paper quantifies gaseous N losses due to ammonia volatilisation and denitrification under controlled conditions at 30 degrees C and 75% to 150% of Field Capacity (FC). Biosolids were mixed with two contrasting soils from subtropical Australia at a rate designed to meet crop N requirements for irrigated cotton or maize (i.e., equivalent to 180 kg N ha(-1)). In the first experiment, aerobically (AE) and anaerobically (AN) digested biosolids were mixed into a heavy Vertosol soil and then incubated for 105 days. Ammonia volatilization over 72 days accounted for less than 4% of the applied NH4-N but 24% (AN) to 29% (AE) of the total applied biosolids' N was lost through denitrification in 105 days. In the second experiment AN biosolids with and without added polyacrimide polymer were mixed with either a heavy Vertosol or a lighter Red Ferrosol and then incubated for 98 days. The N loss was higher from the Vertosol with 16-29% of total N applied versus the Red Ferrosol with 7-10% of total N applied, while addition of polymer to the biosolids increased N loss from 7 to 10% and from 16 to 29% in the Red Ferrosol and Vertosol, respectively. A major product from the denitrification process was N-2 gas, accounting for >90% of the emitted N gases from both experiments. Our findings demonstrate that denitrification could be a major pathway of gaseous N losses under warm and moist conditions.
Resumo:
Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.
Resumo:
The common blacktip shark (Carcharhinus limbatus) and the Australian blacktip shark (C. tilstoni) are morphologically similar species that co-occur in subtropical and tropical Australia. In striking contrast to what has been previously reported, we demonstrate that the common blacktip shark is not rare in northern Australia but occurs in approximately equal frequencies with the Australian blacktip shark. Management of shark resources in northern Australia needs to take account of this new information. Species identification was performed using nucleotide sequences of the control, NADH dehydrogenase subunit 4 (ND4) and cytochrome oxidase I (COI) regions in the mitochondrial genome. The proportion of overall genetic variation (FST) between the two species was small (0.042, P < 0.01) based on allele frequencies at five microsatellite loci. We confirm that a third blacktip species (C. amblyrhynchoides, graceful shark) is closely related to C. tilstoni and C. limbatus and can be distinguished from them on the basis of mtDNA sequences from two gene regions. The Australian blacktip shark (C. tilstoni) was not encountered among 20 samples from central Indonesia that were later confirmed to be common blacktip and graceful sharks. Fisheries regulators urgently need new information on life history, population structure and morphological characters for species identification of blacktip shark species in Australia.
Resumo:
The eucalypt leaf beetle, Paropsis atomaria Olivier, is an increasingly important pest of eucalypt plantations in subtropical eastern Australia. A process-based model, ParopSys, was developed using DYMEXTM and was found to accurately predict the beetle populations. Climate change scenarios within the latest Australian climate model forecast range were run in ParopSys at three locations to predict changes in beetle performance. Relative population peaks of early generations did not change but shifted to earlier in the season. Temperature increases of 1.0 to 1.5 ºC or greater predicted an extra generation of adults at Gympie and Canberra, but not for Lowmead, where increased populations of late season adults were observed under all scenarios. Furthermore, an additional generation of late-larval stages was predicted at temperature increases of greater than 1.0 ºC at Lowmead. Management strategies to address these changes are discussed, as are requirements to improve the predictive capacity of the model.
Resumo:
In subtropical Australia, many native and invasive plant species rely on a shared suite of frugivores, largely birds, for seed dispersal. Many native plants fruit during summer in this region, whereas most invasive plants fruit during winter, thus providing the opportunity for contagious dispersal of seeds beneath synchronously fruiting species. We sampled invasive and native seed rain beneath the canopy of a native summer-fruiting tree Guioa semiglauca and an invasive winter-fruiting tree Cinnamomum camphora, in three study sites over the course of a year. In July, during peak fruiting season for C. camphora and other invasive species, seed rain of invasive species was higher beneath C. camphora than G. semiglauca. This was partly due to the invasive tree Ligustrum lucidum, whose seed rain was three times higher beneath C. camphora than beneath the native tree. In February, seed rain of native species was more abundant beneath the canopy of G. semiglauca than beneath C. camphora, despite the fact that C. camphora was also fruiting at this time. This was probably due to the larger fruit crop produced by G. semiglauca at this time of year. Our study provides evidence that the presence of invasive bird-dispersed plants may facilitate contagious seed dispersal of other invaders, and likewise native species may facilitate seed spread of other native plants.
Resumo:
Abstract Quambalaria shoot blight, caused by the fungus Quambalaria pitereka, is a serious disease affecting the expanding eucalypt plantation estate in subtropical and tropical eastern Australia. Trees that are severely infected are often multi-stemmed and stunted and infection of young trees may give rise to poor form in mature trees. A spotted gum clonal trial provided the opportunity to investigate the impact of the disease on tree growth and factors influencing tree architecture (tree form), which affects wood quality. We measured the effect that Q. pitereka infection during plantation establishment (up to 6 months old) has on growth and tree architecture and productivity to age 3 years. Our results show that the pathogen has a significant impact on trees at plantation establishment, which results in a negative impact on wood quality, potentially reducing merchantable value at final harvest. Tree growth and form was significantly improved where germplasm with low susceptibility to Q. pitereka infection was used.
Resumo:
Experiments at 2 sites in subtropical eastern Australia investigated the variation in agronomic attributes, quality and genetic structure existing within: naturally-occurring populations of kikuyu ( Pennisetum clandestinum) from within Australia; selections produced from the treatment of Whittet seed with mutagenic chemicals; and available cultivars. Runners were collected from coastal areas extending from Western Australia to the Atherton Tableland in north Queensland. One experiment evaluated 10 mutagenic selections and 4 cultivars in a lattice design and the other evaluated 12 ecotypes and 3 cultivars in a randomised block design. The experimental unit was single plants, which were sown on a 1.5 m grid into a weed-free seed-bed (Mutdapilly) or a killed kikuyu stand (Wollongbar), both of which were kept clear of weeds and other kikuyu plants for the duration of the experiments. Foliage height, forage production and runner yield were assessed. Leaf material was analysed for concentrations of crude protein (CP), acid detergent fibre (ADF) and neutral detergent fibre (NDF) and for in vitro dry matter digestibility (IVDDM) in autumn, winter and spring. DNA was extracted from each plant in the ecotype comparison and subjected to a modified DAF (DNA amplification fingerprinting) analysis to determine the level of genetic relatedness. In the first experiment, none of the mutagenic lines derived from Whittet yielded significantly more or was more digestible than commercial Whittet material, although some selections were superior to the other commercial kikuyu cultivars, Noonan and Crofts, and 'common' kikuyu. However, there were significant differences in plant height and runner expansion. In the second experiment, significant differences in plant height, foliage yield, runner development, and leaf CP, ADF, NDF and IVDDM concentrations were demonstrated between the ecotypes, mutagenic selections and cultivars. There was a 4- to 6-fold difference in plant yield and a 6- to 10-fold difference in runner production between the ecotypes at the 2 sites. Quality of the leaf ranged from 200 to 270 g/kg (CP), from 700 to 770 g/kg (IVDDM), from 170 to 250 g/kg (ADF) and from 470 to 550 g/kg (NDF). Improvements in quality and agronomic attributes were not mutually exclusive. Genetic fingerprint analysis of the kikuyu lines indicated that they formed 2 broad groupings. Most of the regional ecotypes were grouped with 'common' kikuyu as represented by the material collected from Wollongbar, and the Beechmont, Atherton Tableland and Gympie ecotypes were grouped with the registered cultivars Whittet, Noonan and Crofts. Two lines produced by mutagenesis from Whittet remained closely linked to Whittet. These results suggest that there was variation between populations of kikuyu in yield, quality and genetic diversity but that mutagenesis by treating seed with sodium azide and diethylene sulphide did not achieve a significant change in the digestibility of leaf over cv. Whittet.
Resumo:
Khaya senegalensis, African mahogany, a high-value hardwood, was introduced in the Northern Territory (NT) in the 1950s; included in various trials there and at Weipa, Q in the 1960s-1970s; planted on ex mine sites at Weipa (160 ha) until 1985; revived in farm plantings in Queensland and in trials in the NT in the 1990s; adopted for large-scale, annual planting in the Douglas-Daly region, NT from 2006 and is to have the planted area in the NT extended to at least 20,000 ha. The recent serious interest from plantation growers, including Forest Enterprises Australia Ltd (FEA), has seen the establishment of some large scale commercial plantations. FEA initiated the current study to process relatively young plantation stands from both Northern Territory and Queensland plantations to investigate the sawn wood and veneer recovery and quality from trees ranging from 14 years (NT – 36 trees) to 18-20 years (North Queensland – 31 trees). Field measures of tree size and straightness were complemented with log end splitting assessment and cross-sectional disc sample collection for laboratory wood properties measurements including colour and shrinkage. End-splitting scores assessed on sawn logs were relatively low compared to fast grown plantation eucalypts and did not impact processing negatively. Heartwood proportion in individual trees ranged from 50% up to 92 % of butt cross-sectional disc area for the visually-assessed dark coloured central heartwood and lighter coloured transition wood combined. Dark central heartwood proportion was positively related to tree size (R2 = 0.57). Chemical tests failed to assist in determining heartwood – sapwood boundary. Mean basic density of whole disc samples was 658 kg/m3 and ranged among trees from 603 to 712 kg/m3. When freshly sawn, the heartwood of African mahogany was orange-red to red. Transition wood appeared to be pinkish and the sapwood was a pale yellow colour. Once air dried the heartwood colour generally darkens to pinkish-brown or orange-brown and the effect of prolonged time and sun exposure is to darken and change the heartwood to a red-brown colour. A portable colour measurement spectrophotometer was used to objectively assess colour variation in CIE L*, a* and b* values over time with drying and exposure to sunlight. Capacity to predict standard colour values accurately after varying periods of direct sunlight exposure using results obtained on initial air-dried surfaces decreased with increasing time to sun exposure. The predictions are more accurate for L* values which represent brightness than for variation in the a* values (red spectrum). Selection of superior breeding trees for colour is likely to be based on dried samples exposed to sunlight to reliably highlight wood colour differences. A generally low ratio between tangential and radial shrinkages was found, which was reflected in a low incidence of board distortion (particularly cupping) during drying. A preliminary experiment was carried out to investigate the quality of NIR models to predict shrinkage and density. NIR spectra correlated reasonably well with radial shrinkage and air dried density. When calibration models were applied to their validation sets, radial shrinkage was predicted to an accuracy of 76% with Standard Error of Prediction of 0.21%. There was also a strong predictive power for wood density. These are encouraging results suggesting that NIR spectroscopy has good potential to be used as a non-destructive method to predict shrinkage and wood density using 12mm diameter increment core samples. Average green off saw recovery was 49.5% (range 40 to 69%) for Burdekin Agricultural College (BAC) logs and 41.9% (range 20 to 61%) for Katherine (NT) logs. These figures are about 10% higher than compared to 30-year-old Khaya study by Armstrong et al. (2007) however they are inflated as the green boards were not docked to remove wane prior to being tallied. Of the recovered sawn, dried and dressed volume from the BAC logs, based on the cambial face of boards, 27% could potentially be used for select grade, 40% for medium feature grade and 26% for high feature grades. The heart faces had a slightly higher recovery of select (30%) and medium feature (43%) grade boards with a reduction in the volume of high feature (22%) and reject (6%) grade boards. Distribution of board grades for the NT site aged 14 years followed very similar trends to those of the BAC site boards with an average (between facial and cambial face) 27% could potentially be used for select grade, 42% for medium feature grade, 26% for high feature grade and 5% reject. Relatively to some other subtropical eucalypts, there was a low incidence of borer attack. The major grade limiting defects for both medium and high feature grade boards recovered from the BAC site were knots and wane. The presence of large knots may reflect both management practices and the nature of the genetic material at the site. This stand was not managed for timber production with a very late pruning implemented at about age 12 years. The large amount of wane affected boards is indicative of logs with a large taper and the presence of significant sweep. Wane, knots and skip were the major grade limiting defects for the NT site reflecting considerable amounts of sweep with large taper as might be expected in younger trees. The green veneer recovered from billets of seven Khaya trees rotary peeled on a spindleless lathe produced a recovery of 83% of green billet volume. Dried veneer recovery ranged from 40 to 74 % per billet with an average of 64%. All of the recovered grades were suitable for use in structural ply in accordance to AS/NZ 2269: 2008. The majority of veneer sheets recovered from all billets was C grade (27%) with 20% making D grade and 13% B grade. Total dry sliced veneer recovery from the logs of the two largest logs from each location was estimated to be 41.1%. Very positive results have been recorded in this small scale study. The amount of colour development observed and the very reasonable recoveries of both sawn and veneer products, with a good representation of higher grades in the product distribution, is encouraging. The prospects for significant improvement in these results from well managed and productive stands grown for high quality timber should be high. Additionally, the study has shown the utility of non-destructive evaluation techniques for use in tree improvement programs to improve the quality of future plantations. A few trees combined several of the traits desired of individuals for a first breeding population. Fortunately, the two most promising trees (32, 19) had already been selected for breeding on external traits, and grafts of them are established in the seed orchard.
Resumo:
Enhancing viticultural skills of Queensland tablegrape growers and developing vine management information for subtropical tablegrapes.
Resumo:
The QUT Centre for Subtropical Design conducted a design-led interdisciplinary collaborative workshop (charrette) to develop some initial ideas for how innovation in research and practice can be applied to the complex problem of resilient future-focussed urban renewal in Rockhampton’s flood-prone suburbs and core grid. Three creative teams explored a range of scenarios for Rockhampton’s resilience in built form over the longer term. A large number of sketches, drawings and text were produced over two days. This report identifies themes, principles and strategies which emerged from the charrette. Each group proposed multiple guiding principles that fell into three strategic approaches: defend (through construction of a levee); adapt (by designing with flood in mind); retreat (a long term view to relocate populations in flood-prone areas). All three groups identified the importance of design that accommodates art, heritage, recreation, sustainability and tourism, and proposed these as principles to guide future strategies that mediate between Rockhampton’s broader ecological landscape and urban living to accommodate more affordable housing options, demonstrate sustainability and be climate responsive to predicted increased extreme weather events including flooding. The charrette outcomes pave the way to investigate wider issues and solutions to Rockhampton’s resilient future, beyond a levee as an isolated structure.
Resumo:
Maize productivity improvement for tropical and subtropical Australia.
Resumo:
In Queensland, Australia, strawberries (Fragaria xananassa Duchesne) are grown in open fields and rainfall events can damage fruit. Cultivars that are resistant to rain damage may reduce losses and lower risk for the growers. However, little is known about the genetic control of resistance and in a subtropical climate, unpredictable rainfall events hamper evaluation. Rain damage was evaluated on seedling and clonal trials of one breeding population comprising 645 seedling genotypes and 94 clones and on a second clonal population comprising 46 clones from an earlier crossing to make preliminary estimates of heritability. The incidence of field damage from rainfall and damage after laboratory soaking was evaluated to determine if this soaking method could be used to evaluate resistance to rain damage. Narrow-sense heritability of resistance to rain damage calculated for seedlings was low (0.21 +/- 0.15) and not significantly different from zero; however, broad-sense heritability estimates were moderate in both seedlings (0.49 +/- 0.16) and clones (0.45 +/- 0.08) from the first population and similar in clones (0.56 +/- 0.21) from the second population. Immersion of fruit in deionized water produced symptoms consistent with rain damage in the field. Lengthening the duration of soaking of 'Festival' fruit in deionized water exponentially increased the proportion of damage to fruit ranging in ripeness from immature to ripe during the first 6-h period of soaking. When eight genotypes were evaluated, the proportion of sound fruit after soaking in deionized water in the laboratory for up to 5 h was linearly related (r(2) = 0.90) to the proportion of sound fruit in the field after 89 mm of rain. The proportion of sound fruit of the breeding genotype '2008-208' and 'Festival' under soaking (0.67, 0.60) and field (0.52, 0.43) evaluations, respectively, is about the same and these genotypes may be useful sources of resistance to rain damage.
Resumo:
Dairy farms located in the subtropical cereal belt of Australia rely on winter and summer cereal crops, rather than pastures, for their forage base. Crops are mostly established in tilled seedbeds and the system is vulnerable to fertility decline and water erosion, particularly over summer fallows. Field studies were conducted over 5 years on contrasting soil types, a Vertosol and Sodosol, in the 650-mm annual-rainfall zone to evaluate the benefits of a modified cropping program on forage productivity and the soil-resource base. Growing forage sorghum as a double-crop with oats increased total mean annual production over that of winter sole-crop systems by 40% and 100% on the Vertosol and Sodosol sites respectively. However, mean annual winter crop yield was halved and overall forage quality was lower. Ninety per cent of the variation in winter crop yield was attributable to fallow and in-crop rainfall. Replacing forage sorghum with the annual legume lablab reduced fertiliser nitrogen (N) requirements and increased forage N concentration, but reduced overall annual yield. Compared with sole-cropped oats, double-cropping reduced the risk of erosion by extending the duration of soil water deficits and increasing the time ground was under plant cover. When grown as a sole-crop, well fertilised forage sorghum achieved a mean annual cumulative yield of 9.64 and 6.05 t DM/ha on the Vertosol and Sodosol, respectively, being about twice that of sole-cropped oats. Forage sorghum established using zero-tillage practices and fertilised at 175 kg N/ha. crop achieved a significantly higher yield and forage N concentration than did the industry-standard forage sorghum (conventional tillage and 55 kg N/ha. crop) on the Vertosol but not on the Sodosol. On the Vertosol, mean annual yield increased from 5.65 to 9.64 t DM/ha (33 kg DM/kg N fertiliser applied above the base rate); the difference in the response between the two sites was attributed to soil type and fertiliser history. Changing both tillage practices and N-fertiliser rate had no affect on fallow water-storage efficiency but did improve fallow ground cover. When forage sorghum, grown as a sole crop, was replaced with lablab in 3 of the 5 years, overall forage N concentration increased significantly, and on the Vertosol, yield and soil nitrate-N reserves also increased significantly relative to industry-standard sorghum. All forage systems maintained or increased the concentration of soil nitrate-N (0-1.2-m soil layer) over the course of the study. Relative to sole-crop oats, alternative forage systems were generally beneficial to the concentration of surface-soil (0-0.1 m) organic carbon and systems that included sorghum showed most promise for increasing soil organic carbon concentration. We conclude that an emphasis on double-or summer sole-cropping rather than winter sole-cropping will advantage both farm productivity and the soil-resource base.