966 resultados para Structural characterization
Resumo:
West Nile Virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection causes severe neurological disease and fatalities in both human and animal hosts. The West Nile viral protease (NS2B-NS3) is essential for post-translational processing in host-infected cells of a viral polypeptide precursor into structural and functional viral proteins, and its inhibition could represent a potential treatment for viral infections. This article describes the design, expression, and enzymatic characterization of a catalytically active recombinant WNV protease, consisting of a 40-residue component of cofactor NS2B tethered via a noncleavable nonapeptide (G(4)SG(4)) to the N-terminal 184 residues of NS3. A chromogenic assay using synthetic para-nitroanilide (pNA) hexapeptide substrates was used to identify optimal enzyme-processing conditions (pH 9.5, I < 0.1 M, 30% glycerol, 1 mM CHAPS), preferred substrate cleavage sites, and the first competitive inhibitor (Ac-FASGKR- H, IC50 &SIM; 1 μM). A putative three-dimensional structure of WNV protease, created through homology modeling based on the crystal structures of Dengue-2 and Hepatitis C NS3 viral proteases, provides some valuable insights for structure-based design of potent and selective inhibitors of WNV protease.
Resumo:
A systematic study on the structural properties and external morphologies of large-pore mesoporous organosilicas synthesized using triblock copolymer EO20PO70EO20 as a template under low-acid conditions was carried out. By employing the characterization techniques of SAXS, FE-SEM, and physical adsorption of N-2 in combination with alpha(s)-plot method, the structural properties and external morphologies of large-pore mesoporous organosilicas were critically examined and compared with that of their pure-silica counterparts synthesized under similar conditions. It has been observed that unlike mesoporous pure silicas, the structural and morphological properties of mesoporous organosilicas are highly acid-sensitive. High-quality mesoporous organosilicas can only be obtained from synthesis gels with the molar ratios of HCl/H2O between 7.08 x 10(-4) and 6.33 x 10(-3), whereas mesoporous pure silicas with well-ordered structure can be obtained in a wider range of acid concentration. Simply by adjusting the HCl/H2O molar ratios, the micro-, meso-, and macroporosities of the organosilica materials can be finely tuned without obvious effect on their structural order. Such a behavior is closely related to their acid-controlled morphological evolution: from necklacelike fibers to cobweb-supported pearl-like particles and to nanosized particulates.
Resumo:
Cyclotides are mini-proteins of 28-37 amino acid residues that have the unusual feature of a head-to-tail cyclic backbone surrounding a cystine knot. This molecular architecture gives the cyclotides heightened resistance to thermal, chemical and enzymatic degradation and has prompted investigations into their use as scaffolds in peptide therapeutics. There are now more than 80 reported cyclotide sequences from plants in the families Rubiaceae, Violaceae and Cucurbitaceae, with a wide variety of biological activities observed. However, potentially limiting the development of cyclotide-based therapeutics is a lack of understanding of the mechanism by which these peptides are cyclized in vivo. Until now, no linear versions of cyclotides have been reported, limiting our understanding of the cyclization mechanism. This study reports the discovery of a naturally occurring linear cyclotide, violacin A, from the plant Viola odorata and discusses the implications for in vivo cyclization of peptides. The elucidation of the cDNA clone of violacin A revealed a point mutation that introduces a stop codon, which inhibits the translation of a key Asn residue that is thought to be required for cyclization. The three-dimensional solution structure of violacin A was determined and found to adopt the cystine knot fold of native cyclotides. Enzymatic stability assays on violacin A indicate that despite an increase in the flexibility of the structure relative to cyclic counterparts, the cystine knot preserves the overall stability of the molecule. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.
Resumo:
1 Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells. 2 Both neuronal and non-neuronal CLR immunopositive cells were present in our model. 3 High affinity, specific [ 125I]-AM binding sites (K(d) 79±9 pM and B(max) 571±34 fmol mg -1 protein) were more abundant than specific [ 125I]-CGRP binding sites (K(d) 12±0.7 pM and B(max) 32±2 fmol mg -1 protein) in embryonic spinal cord cells. 4 Specific [ 125I]-AM binding was competed by related molecules with a ligand selectivity profile of rAM>hAM(22-52)>rCGRPα>CGRP(8-37) ≫[r-(r*,s*)]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl] carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1, 4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-piperidinecarboxamide (BIBN4096BS). 5 Specific [ 125I]-CGRP binding was competed by rCGRPα>rAM≥ CGRP(8-37)≥BIBN4096BS>hAM(22-52). 6 Cellular levels of cAMP were increased by AM (pEC"5"0 10.2±0.2) and less potently by rCGRPα (pEC"5"0 8.9±0.4). rCGRPα-induced cAMP accumulation was effectively inhibited by CGRP(8-37) (pA"2 7.63±0.44) and hAM(22-52) (pA"2 6.18±0.21) while AM-stimulation of cAMP levels was inhibited by CGRP(8-37) (pA"2 7.41±0.15) and AM(22-52) (pA"2 7.26±0.18). BIBN4096BS only antagonized the effects of CGRP (pA"2 8.40±0.30) on cAMP accumulation. 7 These pharmacological profiles suggest that effects of CGRP are mediated by the CGRP"1 (CLR/RAMP1) receptor in our model while those of AM are related to the activation of the AM"1 (CLR/RAMP2) receptor subtype. © 2006 Nature Publishing Group All rights reserved.
Resumo:
Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.
Resumo:
Designing degradable hydrogels is complicated by the structural and temporal complexities of the gel and evolving tissue. A major challenge is to create scaffolds with sufficient mechanical properties to restore initial function while simultaneously controlling temporal changes in the gel structure to facilitate tissue formation. Poly(ethylene glycol) was used in this work, to form biodegradable poly(ethylene glycol)-based hydrogels with hydrolyzable poly-l-lactide segments in the backbone. Non-degradable poly(ethylene glycol) was also introduced in the formulation to obtain control of the degradation profile that encompasses cell growth and new tissue formation. The dependence on polymer composition was observed by higher degradation profiles and decreased mechanical properties as the content of degradable segments was increased in the formulation. Based on in vitro tests, no toxicity of extracts or biomaterial in direct contact with human adipose tissue stem cells was observed, and the ultraviolet light treatment did not affect the proliferation capacity of the cells.
Resumo:
Copper(II) complexes of some pyridine-2-carboxamidrazones have been prepared and characterized. The crystal structures of the copper complex cis-[dichloro(N1-2-acetylthiophene-pyridine-2-carboxamidrazone) copper(II)] 8a and one of the free ligands, viz. {(p-chloro-2-thioloxy-benzylidine-pyridine-2-carboxamidrazone)} 6, have been determined. The former shows a highly distorted square planar geometry around copper, with weak intermolecular coordination from the thiophenyl sulfur resulting in a stacking arrangement in the crystal lattice. The in vitro activities of the synthesized compounds against the malarial parasite Plasmodium falciparum are reported for the first time, which clearly shows the advantage of copper complexation and the requirement of four coordinate geometry around copper as some of the key structural features for designing such metal-based antimalarials. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Collagen, the main structural component of the extracellular matrix (ECM), provides tensile stiffness to different structures and organs against rupture. However, collagen tissue-engineered implants are hereto still lacking in mechanical strength. Attempts to create stiffer scaffolds have resulted in increased brittleness of the material, reducing the versatility of the original component. The hypothesis behind this research is that the introduction of an elastic element in the scaffold will enhance the mechanical properties of the collagen-based scaffolds, as elastin does in the ECM to prevent irreversible deformation. In this study, an elastin-like polymer (ELP) designed and synthesized using recombinant DNA methodology is used with the view to providing increased proteolytic resistance and increased functionality to the scaffolds by carrying specific sequences for microbial transglutaminase cross-linking, endothelial cell adhesion, and drug delivery. Evaluation of the effects that cross-linking ELP-collagen has on the physicochemical properties of the scaffold such as porosity, presence of cross-linking, thermal behavior, and mechanical strength demonstrated that the introduction of enzymatically resistant covalent bonds between collagen and ELP increases the mechanical strength of the scaffolds in a dose-dependent manner without significantly affecting the porosity or thermal properties of the original scaffold. Importantly, the scaffolds also showed selective behavior, in a dose (ELP)-dependent manner toward human umbilical vein endothelial cells and smooth muscle cells when compared to fibroblasts.
Resumo:
Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.
Resumo:
This paper examines whether the observed long memory behavior of log-range series is to some extent spurious and whether it can be explained by the presence of structural breaks. Utilizing stock market data we show that the characterization of log-range series as long memory processes can be a strong assumption. Moreover, we find that all examined series experience a large number of significant breaks. Once the breaks are accounted for, the volatility persistence is eliminated. Overall, the findings suggest that volatility can be adequately represented, at least in-sample, through a multiple breaks process and a short run component.
Resumo:
Study on Napier grass leaf (NGL), stem (NGS) and leaf and stem (NGT) was carried out. Proximate, ultimate and structural analyses were evaluated. Functional groups and crystalline components in the biomass were examined. Pyrolysis study was conducted in a thermogravimetric analyzer under nitrogen atmosphere of 20 mL/min at constant heating rate of 10 K/min. The results reveal that Napier grass biomass has high volatile matter, higher heating value, high carbon content and lower ash, nitrogen and sulfur contents. Structural analysis shows that the biomass has considerable cellulose and lignin contents which are good candidates for good quality bio-oil production. From the pyrolysis study, degradation of extractives, hemicellulose, cellulose and lignin occurred at temperature around 478, 543, 600 and above 600 K, respectively. Kinetics of the process was evaluated using reaction order model. New equations that described the process were developed using the kinetic parameters and data compared with experimental data. The results of the models fit well to the experimental data. The proposed models may be a reliable means for describing thermal decomposition of lignocellulosic biomass under nitrogen atmosphere at constant heating rate.
Resumo:
Hydroperiod, or the distribution, duration and timing of flooding affects both plant and animal distributions. The Florida Everglades is currently undergoing restoration that will result in altered hydroperiods. This study was conducted in Everglades National Park to document the variability in periphyton community structure and function between long and short hydroperiod Everglades marshes. Periphyton is an important primary producer and important food resource in the Everglades. Periphyton is also involved in marl soil formation and nutrient cycling. Although periphyton is an important component of the Everglades landscape, little is known about periphyton structural-functional variation between hydroperiods. ^ For this study diatoms, as well as fresh algae slides of diatoms, cyanobacteria and green algae were identified and enumerated. Short verse long hydroperiod soil and water column nutrients were compared. Short and long hydroperiod algal periphyton mat productivity rates were compared using BOD incubations. Experimental manipulations were performed to determine the effects of desiccation duration and rewetting on periphyton productivity, community structure, and nutrient flux. ^ Variation in periphyton community structure was significantly greater between hydroperiods than within hydroperiods. Short and long hydroperiod periphyton mats have the same algal species, it is the distribution and abundance that varies between hydroperiods. Long hydroperiod mats have greater diatom abundance while short hydroperiod mats have greater relative filamentous cyanobacterial abundance. ^ Long hydroperiod mats had greater net primary production (npp) than short hydroperiod mats. Short hydroperiod mats respond to rewetting more rapidly than do long hydroperiod mats. Dry short hydroperiod mats became net primary producers within 24 hours of rehydration. Increasing desiccation duration led to greater cyanobacterial abundance in long hydroperiod mats and decreased diatom abundance in both long and short hydroperiod mats. ^