976 resultados para Stratigraphy, paleontology, petrology, geochemistry
Resumo:
This report is an initial investigation of the planktonic foraminifers from the late Pliocene of Ocean Drilling Program Hole 1021C. Planktonic foraminifer assemblages show fair preservation in many samples. Assemblages are quantitatively dominated by Globigerina bulloides, dextral coiling Neogloboquadrina atlantica, and Globorotalia inflata and alternate between cool temperate and subarctic conditions.
Resumo:
During the late early Miocene to early middle Miocene, the Owen Ridge was uplifted to a sufficient height as to be above the realm of turbidite deposition. Monsoonal-induced upwelling appears to have been initiated during the Miocene. On the Oman Margin, the effect of upwelling on the microplankton was established by the middle Miocene. However, the effects of upwelling on the Owen Ridge region were not realized until later, in the early late Miocene. A transition in the upwelling regime took place between the Pliocene and Pleistocene. While the Miocene and Pliocene sediments are dominated by the siliceous component, the Pleistocene sediments seem to be dominated by the calcareous component.
Resumo:
At Site 535, the four lithologic units of Cretaceous age are controlled by two types of sedimentologic facies: (1) the massive light-colored limestones or marly limestones in which the total organic carbon (TOC) content is low and the organic matter more or less oxidized and (2) laminated dark facies in which the TOC content is higher and associated with a well-preserved organic matter of Type II origin. Very little typical Type III organic matter occurs in the whole series from late Berriasian to Aptian and Cenomanian. Fluctuations from oxidizing to reducing environments of deposition are proposed to account for the variations in properties of the Type II organic matter between the different facies. Dark laminated layers are good but immature potential source rocks: petroleum potential is often higher than 2 kg HC/t of rock.
Resumo:
Concentrations and d34S and d13C values were determined on SO4, HCO3, CO2, and CH4 in interstitial water and gas samples from the uppermost 400 m of sediment on the Blake Outer Ridge. These measurements provide the basis for detailed interpretation of diagenetic processes associated with anaerobic respiration of electrons generated by organic- matter decomposition. The sediments are anaerobic at very shallow depths (<1 m) below the seafloor. Sulfate reduction is confined to the uppermost 15 m of sediment and results in a significant outflux of oxidized carbon from the sediments. At the base of the sulfate reduction zone, upward-diffusing CH4 is being oxidized, apparently in conjunction with SO4 reduction. CH4 generation by CO2 reduction is the most important metabolic process below the 15-m depth. CO2 removal is more rapid than CO2 input over the depth interval from 15 to 100 m, and results in a slight decrease in HCO3 concentration accompanied by a 40 per mil positive shift in d13C. The differences among coexisting CH4, CO2, and HCO3 are consistent with kinetic fractionation between CH4 and dissolved CO2, and equilibrium fractionation between CO2 and HCO3. At depths greater than 100 m, the rate of input of CO2 (d13C = -25 per mil) exceeds by 2 times the rate of removal of CO2 by conversion to CH4 (d13C of -60 to -65 per mil). This results in an increase of dissolved HCO3 concentration while maintaining d13C of HCO3 relatively constant at +10 per mil. Non-steady-state deposition has resulted in significantly higher organic carbon contents and unusually high (70 meq/l) pore-water alkalinities below 150 m. These high alkalinities are believed to be related more to spontaneous decarboxylation reactions than to biological processes. The general decrease in HCO3 concentration with constant d13C over the depth interval of 200 to 400 m probably reflects increased precipitation of authigenic carbonate. Input-output carbon isotope-mass balance calculations, and carbonate system equilibria in conjunction with observed CO2-CH4 ratios in the gas phase, independently suggest that CH4 concentrations on the order of 100 mmol/kg are present in the pore waters of Blake Outer Ridge sediments. This quantity of CH4 is believed to be insufficient to saturate pore waters and stabilize the CH4*6H2O gas hydrate. Results of these calculations are in conflict with the physical recovery of gas hydrate from 238 m, and with the indirect evidence (seismic reflectors, sediment frothing, slightly decreasing salinity and chlorinity with depth, and pressure core barrel observations) of gas-hydrate occurrence in these sediments. Resolution of this apparent conflict would be possible if CH4 generation were restricted to relatively thin (1-10 m) depth intervals, and did not occur uniformly at all depths throughout the sediment column, or if another methanogenic process (e.g., acetate fermentation) were a major contributor of gas.
Resumo:
The organic facies of Early and middle Cretaceous sediments drilled at DSDP Site 534 is dominated by terrestrially derived plant remains and charcoal. Marine organic matter is mixed with the terrestrial components, but through much of this period was diluted by the terrestrial material. The supply of terrestrial organic matter was high here because of the nearness of the shore and high runoff promoted by a humid temperate coastal climate. Reducing conditions favored preservation of both marine and terrestrial organic matter, the terrestrial materials having reached the site mostly in turbidity currents or in the slow-moving, near-bottom nepheloid layer. An increase in the abundance of terrestrial organic matter occurred when the sea level dropped in the Valanginian and again in the Aptian-Albian, because rivers dumped more terrigenous elastics into the Basin and marine productivity was lower at these times than when sea level was high. A model is proposed to explain the predominance of reducing conditions in the Valanginian-Aptian, of oxidizing conditions in the late Aptian, and of reducing conditions in the Albian-Cenomanian. The model involves influx of oxygen-poor subsurface waters from the Pacific at times of high or rising sea level (Valanginian-Aptian, and Albian- Cenomanian) and restriction of that influx at times of low sea level (late Aptian). In the absence of a supply of oxygenpoor deep water, the bottom waters of the North Atlantic became oxidizing in the late Aptian, probably in response to development of a Mediterranean type of circulation. The influx of nutrients from the Pacific led to an increase in productivity through time, accounting for an increase in the proportion of marine organic matter from the Valanginian into the Aptian and from the Albian to the Cenomanian. Conditions were dominantly oxidizing through the Middle Jurassic into the Berriasian, with temporary exceptions when bottom waters became reducing, as in the Callovian. Mostly terrestrial and some marine organic matter accumulated during the Callovian reducing episode. When Jurassic bottom waters were oxidizing, only terrestrial organic matter was buried in the sediments, in very small amounts.
Resumo:
Upper Miocene to Pleistocene hemipelagites and resedimented facies recovered at Holes 976B and 977A (Leg 161) in the Alboran Basin consist mainly of biogenic and detrital components, with a minor contribution of neoformed mineral phases. Diagenetic processes have not obliterated the primary deposition signal, and therefore detrital components (quartz, feldspar, detrital dolomite, rock fragments, and clays) provide information about source rocks and provenances. No major bulk or clay mineralogy differences were recognized between resedimented and hemipelagic facies; in fact, similar mineral assemblages in both types of facies suggest common source rocks. However, mineral abundance fluctuations can be related to climate variations and tectonic factors, as the main controls of sediment fill of this basin. A marked increase in smectites in Messinian sediments suggests an extensive development of soils during that time, probably favored by the alternation of wet and dry climate episodes and the relative aridification of the Mediterranean borderlands. A notable increase in detrital components suggests a sea-level fall and/or tectonic uplift during the late Pliocene. The significant increase in detrital dolomite in the uppermost Pliocene deposits suggests the uplift of dolomite-rich rocks as source areas. Mineral components in Pleistocene sediments indicate increasing tectonic stability, and clay-mineral fluctuations during the Pleistocene can be related not only to tectonic events, but also to alternating cooling and warming periods.
Resumo:
The nine holes (556-564) drilled during DSDP Leg 82 in a region west and southwest of the Azores Platform (Fig. 1) exhibit a wide variety of chemical compositions that indicate a complex petrogenetic history involving crystal fractionation, magma mixing, complex melting, and mantle heterogeneity. The major element chemistry of each hole except Hole 557 is typical of mid-ocean ridge basalts (MORBs), whereas the trace element and rare earth element (REE) abundances and ratios are more variable, and show that both depleted Type I and enriched Type II basalts have been erupted in the region. Hole 556 (30-34 Ma), located near a flow line through the Azores Triple Junction, contains typically depleted basalts, whereas Hole 557 (18 Ma), located near the same flow line but closer to the Azores Platform, is a highly enriched FeTi basalt, indicating that the Azores hot-spot anomaly has existed in its present configuration for at least 18 Ma, but less than 30-34 Ma. Hole 558 (34-37 Ma), located near a flow line through the FAMOUS and Leg 37 sites, includes both Type I and II basalts. Although the differences in Zr/Nb and light REE/heavy REE ratios imply different mantle sources, the (La/Ce)ch (>1) and Nd isotopic ratios are almost the same, suggesting that the complex melting and pervasive, small-scale mantle heterogeneity may account for the variations in trace element and REE ratios observed in Hole 558 (and FAMOUS sites). Farther south, Hole 559 (34-37 Ma), contains enriched Type II basalts, whereas Hole 561 (14-17 Ma), located further east near the same flow line, contains Type I and II basalts. In this case, the (La/Ce)ch and Nd isotopic ratios are different, indicating two distinct mantle sources. Again, the existence along the same flow line of two holes exhibiting such different chemistry suggests that mantle heterogeneity may exist on a more pervasive and transient smaller scale. (Hole 560 was not sampled for this study because the single basalt clast recovered was used for shipboard analysis.) All of the remaining three holes (562, 563, 564), located along a flow line about 100 km south of the Hayes Fracture Zone (33°N), contain only depleted Type I basalts. The contrast in chemical compositions suggests that the Hayes Fracture Zone may act as a "domain" boundary between an area of fairly homogeneous, depleted Type I basalts to the south (Holes 562-564) and a region of complex, highly variable basalts to the north near the Azores hot-spot anomaly (Holes 556-561).
Resumo:
Basalts from Maud Rise, Weddell Sea, are vesicular and olivine-phyric. Major, trace, and rare earth element concentrations are similar to those of alkali basalts from ocean islands and seamounts. The rocks are low in MgO, Cr, Ni, and Sc, and high in TiO2, K2O, P2O5, Zr, and LREE contents. The abundance of "primary" biotite and apatite in the matrix indicates the melting of a hydrous mantle. Prevalence of olivine and absence of plagioclase in the rocks suggests that the volatile in the melt was an H2O-CO2 mixture, where H2O was <0.5. Mantle derived xenocrysts in the basalt include corroded orthopyroxene, chromite, apatite, and olivine. Olivine (Fo90) is too magnesian to be in equilibrium with the basalts, as they contain only 5-6 wt% MgO. Based on the presence of mantle xenocrysts, the high concentration of incompatible elements, the spatial and chemical affinity with other ocean island basalts from the area, and the relative age of the basalt (overlain by late Campanian sediments), it is suggested that Maud Rise was probably generated by hot-spot activity, possible during a ridge crest jump prior to 84 Ma (anomaly 34 time). Iddingsite, a complex intergrowth of montmorillonite and goethite, is the major alteration product of second generation olivine. It is suggested that iddingsite crystallized at low temperatures (<200°C) from an oxidized fluid during deuteric alteration. Vesicles are commonly filled by zeolites which have been replaced by K-feldspars.
Resumo:
Nineteen trace elements, including seven rare earth elements (REE's), and 10 major and minor elements in 76 sediment samples from Sites 798 (Oki Ridge) and 799 (Yamato Trough) were determined by means of instrumental neutron activation analysis and X-ray fluorescence spectrometry. Most REE patterns (chondrite-normalized) of the sediments from both sites were nearly identical to the patterns of terrigenous materials. The cerium anomaly (slightly positive) frequently appeared in REE patterns of the sediments (200-750 mbsf) from Site 799. Cerium may be selectively incorporated into the sediments with hydrogenous manganese precipitation. However, the degree of the anomaly was not well correlated with manganese content, suggesting that cerium may behave as a trivalent REE (like the other REE's) during diagenesis while manganese is transported in the sediment column accompanied by reduction to a lower oxidation state. The Th/Sc ratio of the sediments from Sites 798 and 799 tended to decrease with penetration depth. Such a depth profile may indicate a decrease in basic volcanism activities from the Pliocene (Site 798) and Miocene (Site 799). The La/Yb ratio and degree of europium anomaly also varied with depth, which may imply that two or more components with different REE patterns were supplied throughout sedimentation at sites in the Japan Sea.
Resumo:
Under present climate conditions, convection at high latitudes of the North Pacific is restricted to shallower depths than in the North Atlantic. To what extent this asymmetry between the two ocean basins was maintained over the past 20 kyr is poorly known because there are few unambiguous proxy records of ventilation from the North Pacific. We present new data for two sediment cores from the California margin at 800 and 1600 m depth to argue that the depth of ventilation shifted repeatedly in the northeast Pacific over the course of deglaciation. The evidence includes benthic foraminiferal Cd/Ca, 18O/16O, and 13C/12C data as well as radiocarbon age differences between benthic and planktonic foraminifera. A number of features in the shallower of the two cores, including an interval of laminated sediments, are consistent with changes in ventilation over the past 20 kyr suggested by alternations between laminated and bioturbated sediments in the Santa Barbara Basin and the Gulf of California [Keigwin and Jones, 1990 doi:10.1029/PA005i006p01009; Kennett and Ingram, 1995 doi:10.1038/377510a0; Behl and Kennett, 1996 doi:10.1038/379243a0]. Data from the deeper of the two California margin cores suggest that during times of reduced ventilation at 800 m, ventilation was enhanced at 1600 m depth, and vice versa. This pronounced depth dependence of ventilation needs to be taken into account when exploring potential teleconnections between the North Pacific and the North Atlantic.
Resumo:
The sediment column overlying basement in the Lau Basin consists of a sequence of volcaniclastic turbidites interbedded with hemipelagic clayey nannofossil mixed sediments, overlain in turn by a sequence of hemipelagic clayey nannofossil oozes containing sporadic calcareous turbidites. The clayey nannofossil oozes and mixed sediments are pervasively stained by hydrothermally derived iron and manganese oxyhydroxides. Sharply defined, lighter colored bands occur in the hemipelagic sediments, immediately beneath some (but by no means all) volcaniclastic and calcareous turbidites. These are identified as reduction haloes, of a type previously identified in quite different turbidite/pelagic sequences. The haloes are attributed to the burial of labile surficial Corg by turbidites, followed by the remineralization of this Corg with Mn and Fe oxyhydroxides as electron acceptors. The resultant characteristic Mn and Fe concentration/depth profiles are described, and a model is proposed for their development. The color alteration of the halo is ascribed to the removal of Mn oxyhydroxides, because, although the Fe content fluctuates through the haloes, this does not appear to affect their color. Other elements (Co, Cu, and Ni) are also at low concentration levels in the haloes like Mn, consistent with remobilization and migration out of the halo section, although the profile shapes are not identical with those of Mn. The behavior of V is distinctive in that it appears to have migrated into the haloes to be enriched there. Haloes are unlikely to form if turbidite emplacement is erosive and removes the near-surface layer, which generally is the most fluid part of the sediment and contains the highest levels of reactive Corg to drive the reduction process. Conversely, the presence of a halo implies that emplacement of the overlying turbidite did not significantly erode the pre-existing sediment/water interface.
Stable isotope and trace element geochemistry of carbonate sediments at DSDP Holes 87-577 and 6-47.2
Resumo:
Detailed analyses of well-preserved carbonate samples from across the Cretaceous/Tertiary boundary in Hole 577 have revealed a significant decline in the d13C values of calcareous nannoplankton from the Maestrichtian to the Danian Age accompanied by a substantial reduction in carbonate accumulation rates. Benthic foraminifers, however, do not exhibit a shift in carbon composition similar to that recorded by the calcareous nannoplankton, but actually increase slightly over the same time interval. These results are similar to the earlier findings at two North Pacific Deep Sea Drilling Project locations, Sites 47.2 and 465, and are considered to represent a dramatic decrease in oceanic phytoplankton production associated with the catastrophic Cretaceous/Tertiary boundary extinctions. In addition, the change in carbon composition of calcareous nannoplankton across the Cretaceous/Tertiary boundary at Hole 577 is accompanied by only minor changes in the oxygen isotope trends of both calcareous nannoplankton and benthic foraminifers, suggesting that temperature variations in the North Pacific from the late Maestrichtian to the early Danian Age were insignificant.
Resumo:
This chapter summarizes the principal results of drilling at Deep Sea Drilling Project (DSDP) Site 595, where the Ngendei Seismic Experiment and the emplacement of DARPA's Marine Seismic System (MSS) were carried out. Background and objectives for this work are presented in the introductory chapter to this volume. Interpretation of the seismic experiment and drilling results are presented in subsequent parts of this volume. The chapter also provides a detailed operational summary of the successful deployment of the MSS during Leg 91.
Resumo:
Seven quartered sections of Pliocene to Mesozoic (Cenomanian) cores from the Nauru Basin contain primarily marine organic matter admixed with detectable amounts of terrigenous organic matter. The mixture is immature with respect to organic genesis. Chemical properties of this organic matter are compared with properties of other deep-ocean cores from DSDP sites in the central Pacific.