951 resultados para Stochastic quantization
Resumo:
Based on dynamic renormalization group techniques, this letter analyzes the effects of external stochastic perturbations on the dynamical properties of cholesteric liquid crystals, studied in presence of a random magnetic field. Our analysis quantifies the nature of the temperature dependence of the dynamics; the results also highlight a hitherto unexplored regime in cholesteric liquid crystal dynamics. We show that stochastic fluctuations drive the system to a second-ordered Kosterlitz-Thouless phase transition point, eventually leading to a Kardar-Parisi-Zhang (KPZ) universality class. The results go beyond quasi-first order mean-field theories, and provides the first theoretical understanding of a KPZ phase in distorted nematic liquid crystal dynamics.
Resumo:
For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.
Resumo:
Stochastic anti-resonance, that is resonant enhancement of randomness caused by polarization mode beatings, is analyzed both numerically and analytically on an example of fibre Raman amplifier with randomly varying birefringence. As a result of such anti-resonance, the polarization mode dispersion growth causes an escape of the signal state of polarization from a metastable state corresponding to the pulling of the signal to the pump state of polarization.This phenomenon reveals itself in abrupt growth of gain fluctuations as well as in dropping of Hurst parameter and Kramers length characterizing long memory in a system and noise induced escape from the polarization pulling state. The results based on analytical multiscale averaging technique agree perfectly with the numerical data obtained by direct numerical simulations of underlying stochastic differential equations. This challenging outcome would allow replacing the cumbersome numerical simulations for real-world extra-long high-speed communication systems.
Resumo:
A dolgozat célja, hogy rövid bevezetést adjon a folytonos idejű sztochasztikus analízisbe. A hazai pénzügyi oktatási gyakorlat nagyrészt a diszkrét idejű és gyakran diszkrét állapotterű modellekre épül. Ennek oka a folytonos időparaméterű sztochasztikus folyamatok elméletétől való érthető idegenkedés. A folytonos időparaméterű sztochasztikus analízis a modern matematika egyik csúcsteljesítménye, amely teljeskörű matematikai megértése egyrészt feltételezi, hogy az olvasó tisztában van a modern analízis szinte minden részletével; másrészt a matematikai részletek pontos megértése nem sok segítséget jelent a pénzügyi gondolatok elsajátításakor. / === / In the article we present a short, intuitive introduction to stochastic analysis. Our presentation is aimed for economist and we try to discuss only the most elementary properties of the stochastic analysis. Instead of precise proofs we present some simplified intuitive arguments. The central concept of the discussion is the quadratic variation and the Itō's lemma.
Resumo:
We study bankruptcy games where the estate and the claims have stochastic values. We use the Weak Sequential Core as the solution concept for such games. We test the stability of a number of well known division rules in this stochastic setting and find that most of them are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.
Resumo:
A kooperatív játékelmélet egyik legjelentősebb eredménye, hogy számos konfliktushelyzetben stabil megoldást nyújt. Ez azonban csak statikus és determinisztikus környezetben alkalmazható jól. Most megmutatjuk a mag egy olyan kiterjesztését - a gyenge szekvenciális magot -, amely képes valós, dinamikus, bizonytalan környezetben is eligazítást nyújtani. A megoldást a csődjátékok példájára alkalmazzuk, és segítségével megvizsgáljuk, hogy a pénzügyi irodalom ismert elosztási szabályai közül melyek vezetnek stabil, fenntartható eredményre. _______ One of the most important achievements of cooperative game theory is to provide a stable solution to numerous conflicts. The solutions it presents, on the other hand, have been limited to situations in a static, deterministic environment. The paper examines how the core can be extended to a more realistic, dynamic and uncertain scenario. The bankruptcy games studied are ones where the value of the estate and of the claims are stochastic, and a Weak Sequential Core is used as the solution concept for them. The author tests the stability of a number of well known division rules in this stochastic setting and finds that most are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.