973 resultados para Sternal gland
Resumo:
The purpose of this paper was to study the etiology of mastitis, determine the antimicrobial susceptibility profile of Staphylococcus spp. and to identify the risk factors associated with infection in dairy cows in the states of Bahia and Pernambuco, Brazil. From the 2,064 milk samples analyzed, 2.6% were associated with cases of clinical mastitis and 28.2% with subclinical mastitis. In the microbiological culture, Staphylococcus spp. (49.1%) and Corynebacterium spp. (35.3%) were the main agents found, followed by Prototheca spp. (4.6%) and Gram negative bacilli (3.6%). In the antimicrobial susceptibility testing, all 218 Staphylococcus spp. were susceptible to rifampicin and the least effective drug was amoxicillin (32.6%). Multidrug resistance to three or more drugs was observed in 65.6% of Staphylococcus spp. The risk factors identified for mastitis were the extensive production system, not providing feed supplements, teat drying process, not disinfecting the teats before and after milking, and inadequate hygiene habits of the milking workers. The presence of multiresistant isolates in bovine milk demonstrates the importance of the choice and appropriate use of antimicrobial agents. Prophylactic and control measures, including teat antisepsis and best practices for achieving hygienic milking should be established in order to prevent new cases of the disease in herds.
Resumo:
Fatal Human herpesvirus 1 (HHV-1) was diagnosed in 12 captive marmosets (Callithrix jacchus and Callithrix penicillata) from metropolitan region of São Paulo, São Paulo State. Clinical signs were variable among the cases, but most affected marmosets presented signs associated with viral epithelial replication: oral, lingual and facial skin ulcers and hypersalivation, and viral replication in the central nervous system: prostration, seizure and aggressive behavior. Consistent microscopic findings were diffuse mild to severe nonsuppurative necrotizing meningoencephalitis with gliosis, vasculitis and neuronal necrosis. Additionally, in the brain, oral cavity, skin, adrenal gland and myoenteric plexus intranuclear inclusion bodies were present. Immunohistochemistry confirmed the presence of the HHV-1 antigen in association with lesions in the brain, oral and lingual mucosa, facial skin, adrenal gland and myoenteric plexus. HHV-1-specific polymerase chain reaction (PCR) analysis of the brain was carried out and the virus was detected in 7/8 infected marmosets. It is concluded that HHV-1 causes widespread fatal infection in marmosets.
Resumo:
The study aimed to identify potential biomarkers of mammary gland infection in Santa Inês sheep. Commercial flocks of sheep provided the same hygiene, sanitary, and nutritional management under semi-intensive production systems were monitored during the lactation stage-and assessed 15, 30, 60, and 90 days after delivery (through the end of lactation and weaning). The California Mastitis Test (CMT) was performed on the mammary glands. Milk was collected for bacterial examination and protein analysis. Bacterial culture and biochemical characterization of the samples were performed. Forty-two milk samples from healthy glands (negative CMT and bacterial testing) and 43 milk samples from infected glands (positive CMT and bacterial testing) taken at the predefined time points were assessed. A rennin solution was used to obtain the whey. The proteins analysis was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which allowed for the quantification of nine whey proteins produced in healthy glands: serum albumin, lactoferrin, IgA, IgG heavy-chain (IgG HC), IgG light-chain (IgG LC), total IgG (IgG HC + IgG LC), α-lactalbumin, β-lactoglobulin, protein with MW 15.000 Da, protein with MW 29.000 Da and eleven whey proteins secreted by infected glands, including haptoglobin and α-1-acid glycoprotein. A comparison of whey proteins between healthy and infected glands showed increases (P<0.05) in the secreted and total contents of all proteins, except for IgG LC and α-lactoalbumin. The most significant changes were observed in α-1-acid glycoprotein, lactoferrin and haptoglobin, which showed three-, five-, and seven-fold increases in secretion, respectively. This study showed that haptoglobin, α-1-acid glycoprotein, lactoferrin, albumin, and the IgA and IgG immunoglobulins may serve as potential biomarkers for mammary gland infection in sheep.
Resumo:
Abstract: The aim of this study was to assess the cardiopulmonary effects, the onset time after the administration of a detomidine/ketamine combination, and the recovery from anesthesia of cougars (Puma concolor) anesthetized with detomidine/ketamine and isoflurane or sevoflurane for abdominal ultrasound imaging. Fourteen animals were randomly allocated into two experimental groups: GISO (n=7) and GSEVO (n=7). Chemical restraint was performed using 0.15mg/kg detomidine combined with 5mg/kg ketamine intramuscularly; anesthesia induction was achieved using 2mg/kg propofol intravenously and maintenance with isoflurane (GISO) or sevoflurane (GSEVO). The following parameters were assessed: heart rate, respiratory rate, systolic and diastolic arterial blood pressure, mean arterial blood pressure, oxyhemoglobin saturation, rectal temperature, central venous pressure, and end-tidal carbon dioxide. The time to sternal recumbency (TSR) and time to standing position (TSP) were also determined. There was not statistically significant difference for the cardiopulmonary variables or TSP whereas TSR was significantly shorter in GSEVO. The time to onset of anesthesia was 11.1±1.2 minutes and 11.3±1.8 minutes for GISO and GSEVO, respectively. The anesthesia of cougars with detomidine/ketamine and isoflurane or sevoflurane was conducted with safety, cardiopulmonary stability, and increased time to sternal recumbency in the GISO group.
Resumo:
Abstract: Mammary gland tumors are the most common type of tumors in bitches but research on survival time after diagnosis is scarce. The purpose of this study was to investigate the relationship between survival time after mastectomy and a number of clinical and morphological variables. Data was collected retrospectively on bitches with mammary tumors seen at the Small Animal Surgery Clinic Service at the University of Brasília. All subjects had undergone mastectomy. Survival analysis was conducted using Cox's proportional hazard method. Of the 139 subjects analyzed, 68 died and 71 survived until the end of the study (64 months). Mean age was 11.76 years (SD=2.71), 53.84% were small dogs. 76.92% of the tumors were malignant, and 65.73% had both thoracic and inguinal glands affected. Survival time in months was associated with age (hazard rate ratios [HRR] =1.23, p-value =1.4x10-4), animal size (HRR between giant and small animals =2.61, p-value =0.02), nodule size (HRR =1.09, p-value =0.03), histological type (HRR between solid carcinoma and carcinoma in a mixed tumor =2.40, p-value =0.02), time between diagnosis and surgery (TDS, with HRR =1.21, p-value =2.7x10-15), and the interaction TDS*follow-up time (HRR =0.98, p-value =1.6x10-11). The present study is one of the few on the subject matter. Several important covariates were evaluated and age, animal size, nodule size, histological type, TDS and TDS*follow up time were identified as significantly associated to survival time.
Resumo:
Podisus nigrispinus is a generalist predator naturally occurring in agricultural and forestry systems that effectively contributes to the population balance of phytophagous insects, especially defoliating caterpillars. Histological changes were evaluated in the salivary glands and midgut of P. nigrispinus caused by ingestion of systemic herbicide isoxaflutole. These predator females were fed with leaves of eucalyptus plants, Tenebrio molitor pupae or water, contaminated or not by herbicide. Salivary glands and midguts were dissected, processed and analyzed under a light microscope. Activity level and cell morphology of the salivary glands and midgut showed differences among insects fed on plants, contaminated water or pupae. The epithelia of the salivary gland and midgut of individuals which had no contact with the herbicide showed homogeneous cytoplasm, nucleus with predominance of decondensed chromatin and evident nucleoli, intense cell activity features. As for the insects in contact with contaminated food, they presented undeveloped nucleus and condensed chromatin. The luminal contents of the salivary glands in the contaminated insects had become more acidophilus than in insects without poisoning, as well as having heterogeneous and granular secretion, being more evident in the bioassay in which the insects fed on contaminated water. There was a marked morphological change in the midgut cells in contaminated insects. High degree of apoptosis, disorganization and secretory vacuoles in the epithelial cytoplasm were observed. The apical portion of the midgut cells proved undeveloped, irregular and partially destroyed. It is concluded that isoxaflutole causes morphological changes in the digestive system of the predator P. nigrispinus.
Resumo:
The coast of Espirito Santo State is located in a biogeographic transition zone presenting high diversity. A renewed interest in this region occurred in the 1990s, resulting in various new records and new species descriptions added to the Brazilian marine flora. The study of the infralitoral of this region is just beginning, and a detailed exploration with use of Scuba diving is revealing a flora containing many little-known taxa, particularly of red algae. As a first result, Predaea feldmannii Børgesen is being described for the Brazilian coast. The occurrence of the genus Predaea in Brazil has been considered with restriction since representatives of this genus had been referred only once by Howe & Taylor in 1931, being first considered as Platoma. The occurrence of Predaea in Brazil is now confirmed, and its vegetative and reproductive structures are described in detail. Predaea feldmannii can be recognized by having gonimoblast initial formed on a bulge of the connecting filament, cortical filaments of nearly equal lengths, lack of gland cells, dense clusters of nutritive cells borne only on cells immediatelly contiguous to the auxiliary cell, and a three-celled carpogonial branch.
Resumo:
A review of our recent work on the cromosomal evolution of the Drosophila repleta species group is presented. Most studies have focused on the buzzatii species complex, a monophyletic set of 12 species which inhabit the deserts of South America and the West Indies. A statistical analysis of the length and breakpoint distribution of the 86 paracentric inversions observed in this complex has shown that inversion length is a selected trait. Rare inversions are usually small while evolutionary successful inversions, fixed and polymorphic, are predominantly of medium size. There is also a negative correlation between length and number of inversions per species. Finally, the distribution of inversion breakpoints along chromosome 2 is non-random, with chromosomal regions which accumulate up to 8 breakpoints (putative "hot spots"). Comparative gene mapping has also been used to investigate the molecular organization and evolution of chromosomes. Using in situ hybridization, 26 genes have been precisely located on the salivary gland chromosomes of D. repleta and D. buzzatii; another nine have been tentatively identified. The results are fully consistent with the currently accepted chromosomal homologies between D. repleta and D. melanogaster, and no evidence for reciprocal translocations or pericentric inversions has been found. The comparison of the gene map of D. repleta chromosome 2 with that of the homologous chromosome 3R of D. melanogaster shows an extensive reorganization via paracentric inversions and allows to estimate an evolution rate of ~1 inversion fixed per million years for this chromosome
Resumo:
We determined whether ANP (atrial natriuretic peptide) concentrations, measured by radioimmunoassay, in the ANPergic cerebral regions involved in regulation of sodium intake and excretion and pituitary gland correlated with differences in sodium preference among 40 Wistar male rats (180-220 g). Sodium preference was measured as mean spontaneous ingestion of 1.5% NaCl solution during a test period of 12 days. The relevant tissues included the olfactory bulb (OB), the posterior and anterior lobes of the pituitary gland (PP and AP, respectively), the median eminence (ME), the medial basal hypothalamus (MBH), and the region anteroventral to the third ventricle (AV3V). We also measured ANP content in the right (RA) and left atrium (LA) and plasma. The concentrations of ANP in the OB and the AP were correlated with sodium ingestion during the preceding 24 h, since an increase of ANP in these structures was associated with a reduced ingestion and vice-versa (OB: r = -0.3649, P<0.05; AP: r = -0.3291, P<0.05). Moreover, the AP exhibited a correlation between ANP concentration and mean NaCl intake (r = -0.4165, P<0.05), but this was not the case for the OB (r = 0.2422). This suggests that differences in sodium preference among individual male rats can be related to variations of AP ANP level. Earlier studies indicated that the OB is involved in the control of NaCl ingestion. Our data suggest that the OB ANP level may play a role mainly in day-to-day variations of sodium ingestion in the individual rat
Resumo:
Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i) in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN), ii) in many non-mammalian vertebrates of all classes (but not in any mammals) the pineal gland is both a photoreceptor and a circadian oscillator, and iii) in all non-mammalian vertebrates (but not in any mammals) there are extraretinal (and extrapineal) circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback
Resumo:
The oxyntic mucosa of the mouse stomach is lined with a heterogeneous population of cells that form numerous short pits continuous with long tubular glands. Tritiated thymidine radioautography has made it possible to pinpoint the origin of all cell types and to follow the differentiation/migration of different cell lineages along the pit-gland unit. The proliferating multipotent stem cells functionally anchored in the upper glandular region, the isthmus, give rise to three main lineage precursors: 1) pre-pit cells, which migrate upward to the pit while differentiating into mucus-producing pit cells; 2) pre-neck cells, which migrate downward to the glandular neck while differentiating into mucus-producing neck cells that, by approaching the glandular base, gradually change their phenotype into pepsinogen- and intrinsic factor-producing zymogenic cells; 3) pre-parietal cells, which differentiate into acid-producing parietal cells in the isthmus and then undergo bipolar migration towards the pit and the glandular base. Thus, parietal cells are the only cells that complete their differentiation in the isthmus and then migrate to be scattered throughout the pit-gland unit. To determine whether parietal cells play a role in controlling decisions about cell fate within the pit-gland unit, the gastric epithelium has been examined in transgenic mice expressing the H,K-ATPase ß-subunit-1035 to +24/simian virus 40 large T antigen fusion gene. The blockade in parietal cell differentiation in these mice produces an amplification of lineage precursors, a marked depletion of zymogenic cells and an increase in pit cell census. Ablation of parietal cells in another transgenic mouse model expressing the H,K-ATPase ß-subunit-1035 to +24/diphtheria toxin fragment A fusion gene also produces amplification of lineage precursors, and similar effects on zymogenic and pit cell census. These findings strongly suggest that parietal cells produce regulatory signals that control the cellular differentiation program of both pit and zymogenic cell lineages, and would hopefully improve our ability to identify the cellular pathways leading to malignant transformation
Resumo:
Adrenocortical autoantibodies (ACA), present in 60-80% of patients with idiopathic Addison's disease, are conventionally detected by indirect immunofluorescence (IIF) on frozen sections of adrenal glands. The large-scale use of IIF is limited in part by the need for a fluorescence microscope and the fact that histological sections cannot be stored for long periods of time. To circumvent these restrictions we developed a novel peroxidase-labelled protein A (PLPA) technique for the detection of ACA in patients with Addison's disease and compared the results with those obtained with the classical IIF assay. We studied serum samples from 90 healthy control subjects and 22 patients with Addison's disease, who had been clinically classified into two groups: idiopathic (N = 13) and granulomatous (N = 9). ACA-PLPA were detected in 10/22 (45%) patients: 9/13 (69%) with the idiopathic form and 1/9 (11%) with the granulomatous form, whereas ACA-IIF were detected in 11/22 patients (50%): 10/13 (77%) with the idiopathic form and 1/9 (11%) with the granulomatous form. Twelve of the 13 idiopathic addisonians (92%) were positive for either ACA-PLPA or ACA-IIF, but only 7 were positive by both methods. In contrast, none of 90 healthy subjects was found to be positive for ACA. Thus, our study shows that the PLPA-based technique is useful, has technical advantages over the IIF method (by not requiring the use of a fluorescence microscope and by permitting section storage for long periods of time). However, since it is only 60% concordant with the ACA-IIF method, it should be considered complementary instead of an alternative method to IIF for the detection of ACA in human sera.
Resumo:
Nitric oxide (NO) plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH). The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP). NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS) in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG).