951 resultados para Steep Beach


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to carry out high-precision three-dimensional "integration" for the characteristics of the secondary seismic exploration for Biyang Depression, in the implementation process, through a combination of scientific research and production, summed up high-precision seismic acquisition, processing and interpretation technologies suitable for the eastern part of the old liberated areas, achieved the following results: 1. high-precision complex three-dimensional seismic exploration technology series suitable for shallow depression Biyang block group. To highlight the shallow seismic signal, apply goal-based observing system design, trail from the small panel to receive and protect the shallow treatment of a range of technologies; to explain the use of three-dimensional visualization and coherent combination of full-body three-dimensional fine interpretation identification of the 50-100 m below the unconformity surface and its formation of about 10 meters of the distribution of small faults and improve the small block and stratigraphic unconformity traps recognition. 2. high-precision series of three-dimensional seismic exploration technology suitable for deep depression Biyang low signal to noise ratio of information. Binding model using forward and lighting technology, wide-angle observation system covering the design, multiple suppression and raise the energy of deep seismic reflection processing and interpretation of detailed, comprehensive reservoir description, such as research and technology, identified a number of different types of traps. 3. high-precision seismic exploration technology series for the southern Biyang Depression high steep three-dimensional structure. The use of new technology of seismic wave scattering theory and high-precision velocity model based on pre-stack time migration and depth migration imaging of seismic data and other high-precision processing technology, in order to identify the southern steep slope of the local structure prediction and analysis of sandstone bedrock surface patterns provide a wealth of information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is a basic work to ascertain the parameters of rock mass for evaluation about stability of the engineering. Anisotropism、inhomogeneity and discontinuity characters of the rock mass arise from the existing of the structural plane. Subjected to water、weathering effect、off-loading, mechanical characters of the rock mass are greatly different from rock itself, Determining mechanical parameters of the rock mass becomes so difficult because of structure effect、dimension effect、rheological character, ‘Can’t give a proper parameter’ becomes one of big problems for theoretic analysis and numerical simulation. With the increment of project scale, appraising the project rock mass and ascertaining the parameters of rock mass becomes more and more important and strict. Consequently, researching the parameters of rock mass has important theoretical significance and actual meaning. The Jin-ping hydroelectric station is the first highest hyperbolic arch dam in the world under construction, the height of the dam is about 305m, it is the biggest hydroelectric station at lower reaches of Yalong river. The length of underground factory building is 204.52m, the total height of it is 68.83m, the maximum of span clearance is 28.90m. Large-scale excavation in the underground factory of Jin-ping hydroelectric station has brought many kinds of destructive phenomenon, such as relaxation、spilling, providing a precious chance for study of unloading parameter about rock mass. As we all know, Southwest is the most important hydroelectric power base in China, the construction of the hydroelectric station mostly concentrate at high mountain and gorge area, basically and importantly, we must be familiar with the physical and mechanical character of the rock mass to guarantee to exploit safely、efficiently、quickly, in other words, we must understand the strength and deformation character of the rock mass. Based on enough fieldwork of geological investigation, we study the parameter of unloading rock mass on condition that we obtain abundant information, which is not only important for the construction of Jin-ping hydroelectric station, but also for the construction of other big hydroelectric station similar with Jin-ping. This paper adopt geological analysis、test data analysis、experience analysis、theory research and Artificial Neural Networks (ANN) brainpower analysis to evaluate the mechanical parameter, the major production is as follows: (1)Through the excavation of upper 5-layer of the underground powerhouse and the statistical classification of the main joints fractures exposed, We believe that there are three sets of joints, the first group is lay fracture, the second group and the fourth group are steep fracture. These provide a strong foundation for the following calculation of and analysis; (2)According to the in-situ measurement about sound wave velocity、displacement and anchor stress, we analyses the effects of rock unloading effect,the results show a obvious time-related character and localization features of rock deformation. We determine the depth of excavation unloading of underground factory wall based on this. Determining the rock mass parameters according to the measurement about sound wave velocity with characters of low- disturbing、dynamic on the spot, the result can really reflect the original state, this chapter approximately the mechanical parameters about rock mass at each unloading area; (3)Based on Hoek-Brown experienced formula with geological strength index GSI and RMR method to evaluate the mechanical parameters of different degree weathering and unloading rock mass about underground factory, Both of evaluation result are more satisfied; (4)From the perspective of far-field stress, based on the stress field distribution ideas of two-crack at any load conditions proposed by Fazil Erdogan (1962),using the strain energy density factor criterion (S criterion) proposed by Xue changming(1972),we establish the corresponding relationship between far-field stress and crack tip stress field, derive the integrated intensity criterion formula under the conditions of pure tensile stress among two line coplanar intermittent jointed rock,and establish the corresponding intensity criterion for the exploratory attempt; (5)With artificial neural network, the paper focuses on the mechanical parameters of rock mass that we concerned about and the whole process of prediction of deformation parameters, discusses the prospect of applying in assessment about the parameters of rock mass,and rely on the catalog information of underground powerhouse of Jinping I Hydropower Station, identifying the rock mechanics parameters intellectually,discusses the sample selection, network design, values of basic parameters and error analysis comprehensively. There is a certain significance for us to set up a set of parameters evaluation system,which is in construction of large-scale hydropower among a group of marble mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the subject of oil and gas exploration, migration is an efficacious technique for imagining structures underground. Wave-equation migration (WEM) dominates over other migration methods in accuracy, despite of higher computational cost. However, the advantages of WEM will emerge as the progress of computer technology. WEM is sensitive to velocity model more than others. Small velocity perturbations result in grate divergence in the image pad. Currently, Kirrchhoff method is still very popular in the exploration industry for the reason of difficult to provide precise velocity model. It is very urgent to figure out a way to migration velocity modeling. This dissertation is mainly devoted to migration velocity analysis method for WEM: 1. In this dissertation, we cataloged wave equation prestack depth migration. The concept of migration is introduced. Then, the analysis is applied to different kinds of extrapolate operator to demonstrate their accuracy and applicability. We derived the DSR and SSR migration method and apply both to 2D model. 2. The output of prestack WEM is in form of common image gathers (CIGs). Angle domain common image gathers (ADCIGs) gained by wave equation are proved to be free of artifacts. They are also the most potential candidates for migration velocity analysis. We discussed how to get ADCIGs by DSR and SSR, and obtained ADCIGs before and after imaging separately. The quality of post stack image is affected by CIGs, only the focused or flattened CIGs generate the correct image. Based on wave equation migration, image could be enhanced by special measures. In this dissertation we use both prestack depth residual migration and time shift imaging condition to improve the image quality. 3. Inaccurate velocities lead to errors of imaging depth and curvature of coherent events in CIGs. The ultimate goal of migration velocity analysis (MVA) is to focus scattered event to correct depth and flatten curving event by updating velocities. The kinematic figures are implicitly presented by focus depth aberration and kinetic figure by amplitude. The initial model of Wave-equation migration velocity analysis (WEMVA) is the output of RMO velocity analysis. For integrity of MVA, we review RMO method in this dissertation. The dissertation discusses the general ideal of RMO velocity analysis for flat and dipping events and the corresponding velocity update formula. Migration velocity analysis is a very time consuming work. Respect to computational convenience, we discus how RMO works for synthetic source record migration. In some extremely situation, RMO method fails. Especially in the areas of poorly illuminated or steep structure, it is very difficult to obtain enough angle information for RMO. WEMVA based on wave extrapolate theory, which successfully overcome the drawback of ray based methods. WEMVA inverses residual velocities with residual images. Based on migration regression, we studied the linearized scattering operator and linearized residual image. The key to WEMVA is the linearized residual image. Residual image obtained by Prestack residual migration, which based on DSR is very inefficient. In this dissertation, we proposed obtaining residual migration by time shift image condition, so that, WEMVA could be implemented by SSR. It evidently reduce the computational cost for this method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock mass is widely recognized as a kind of geologic body which consists of rock blocks and discontinuities. The deformation and failure of rock mass is not only determined by rock block,but also by discontinuity which is virtually more important. Mutual cutting and combination of discontinuities controlled mechanical property of rock mass. The complex cutting of discontinuities determine the intense anisotropy on mechanical property of rock mass,especially under the effect of ground stress. Engineering practice has show that the brittle failure of hard rock always occurs when its working stress is far lower than the yield strength and compressive strength,the failure always directly related to the fracture propagation of discontinuities. Fracture propagation of discontinuities is the virtue of hard rock’s failure. We can research the rock mass discontinuous mechanical properties precisely by the methods of statistical analysis of discontinuities and Fracture Mechanics. According to Superposition Principle in Fracture Mechanics,A Problem or C Problem could be chosen to research. Problem A mainly calculates the crack-tip stress field and displacement field on internal discontinuities by numerical method. Problem C calculate the crack-tip stress field and displacement field under the assumption of that the mainly rock mass stress field has been known. So the Problem C avoid the complex mutual interference of stress fields of discontinuities,which is called crack system problem in Fracture Mechanics. To solve Problem C, field test on stress field in the rock mass is needed. The linear Superposition of discontinuities strain energies are Scientific and Rational. The difference of Fracture Mechanics between rock mass and other materials can mostly expression as:other materials Fracture Mechanics mostly face the problem A,and can’t avoid multi-crack puzzle, while the Rock mass Fracture Mechanics answer to the Problem C. Problem C can avoid multi-discontinuities mutual interference puzzle via the ground stress test. On the basis of Problem C, Fracture Mechanics could be used conveniently in rock mass. The rock mass statistics fracture constitutive relations, which introduced in this article, are based on the Problem C and the Discontinuity Strain Energy linear superposition. This constitutive relation has several merits: first, it is physical constitutive relation rather than empirical; second, it is very fit to describe the rock mass anisotropy properties; third, it elaborates the exogenous factors such as ground stress. The rock mass statistics fracture constitutive relation is the available approach to answer to the physical, anisotropic and ground stress impacted rock mass problems. This article stand on the foundation of predecessor’s statistics fractures constitutive relation, and improved the discontinuity distributive function. This article had derived the limitation of negative exponential distribution in the course of regression analysis, and advocated to using the two parameter negative exponential distribution for instead. In order to solve the problems of two-dimension stability on engineering key cross-sectional view in rock mass, this article derived the rock mass planar flexibility tensor, and established rock mass two-dimension penetrate statistics fracture constitutive relation on the basis of penetrate fracture mechanics. Based on the crack tip plasticity research production of penetrate fracture, for example the Irwin plasticity equifinality crack, this article established the way to deal with the discontinuity stress singularity and plastic yielding problem at discontinuity tip. The research on deformation parameters is always the high light region of rock mass mechanics field. After the dam foundation excavation of XiaoWan hydroelectric power station, dam foundation rock mass upgrowthed a great deal of unload cracks, rock mass mechanical property gotten intricacy and strong anisotropy. The dam foundation rock mass mostly upgrowthed three group discontinuities: the decantation discontinuity, the steep pitch discontinuity, and the schistosity plane. Most of the discontinuities have got partial unload looseness. In accordance with ground stress field data, the dam foundation stress field greatly non-uniform, which felled under the great impaction of tectonic stress field, self-weight stress field, excavation geometric boundary condition, and excavation, unload. The discontinuity complexity and stress field heterogeneity, created the rock mass mechanical property of dam foundation intricacy and levity. The research on the rock mass mechanics, if not take every respected influencing factor into consideration as best as we can, major errors likely to be created. This article calculated the rock mass elastic modulus that after Xiao Wan hydroelectric power station dam foundation gutter excavation finished. The calculation region covered possession monolith of Xiao Wan concrete double-curvature arch dam. Different monolith were adopted the penetrate fracture statistics constitutive relation or bury fracture statistics constitutive relation selectively. Statistics fracture constitutive relation is fit for the intensity anisotropy and heterogeneity rock mass of Xiao Wan hydroelectric power station dam foundation. This article had contrastive analysis the statistics fracture constitutive relation result with the inclined plane load test actual measurement elastic modulus and RMR method estimated elastic modulus, and find that the three methods elastic modulus have got greatly comparability. So, the statistics fracture constitutive relations are qualified for trust. Generally speaking,this article had finished following works based on predecessors job: “Argumentation the C Problems of superposition principle in Fracture Mechanics, establish two-dimension penetrate statistics fracture constitutive relation of rock mass, argue the negative exponential distribution limitation and improve it, improve of the three-dimension berry statistics fracture constitutive relation of rock mass, discontinuity-tip plastic zone isoeffect calculation, calculate the rock mass elastic modulus on two-dimension cross-sectional view”. The whole research clue of this article inherited from the “statistics rock mass mechanics” of Wu Faquan(1992).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.