988 resultados para Statistical correlation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has shown that aggregating fetal brain cell cultures are able to attain a highly differentiated state, and that their development is greatly enhanced by growth and/or differentiation factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and the protein kinase C-activating tumor promoter mezerein. The present study shows that in these 3-dimensional cultures the peptide growth factors EGF and bFGF as well as mezerein are able to induce the expression of the proto-oncogene c-fos. This induction was rapid and transient, in good agreement with observations reported from a wide variety of cell types in vitro. The maximal levels of c-fos mRNA found after stimulation were low in immature cultures and increased greatly as maturation progressed. Of the three factors tested, mezerein was the most potent inducer of c-fos. In contrast to the peptide growth factors EGF and bFGF which were found to induce c-fos only in glial cells, mezerein was stimulatory in glial cells as well as in neurons. A similar cell type specificity has been observed previously for the maturation-enhancing response in immature aggregate cultures. However, in the present study no correlation was found between the degree of c-fos induction and the extent of the maturation-enhancing stimulation. Immature cultures known to be most sensitive and responsive to these maturation-enhancing agents required relatively high doses of peptide growth factors for the induction of c-fos, and the maximal levels of c-fos mRNA elicited were much lower than those in differentiated cultures which did not show any long-term response to these stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Prognosis prediction for resected primary colon cancer is based on the T-stage Node Metastasis (TNM) staging system. We investigated if four well-documented gene expression risk scores can improve patient stratification. METHODS: Microarray-based versions of risk-scores were applied to a large independent cohort of 688 stage II/III tumors from the PETACC-3 trial. Prognostic value for relapse-free survival (RFS), survival after relapse (SAR), and overall survival (OS) was assessed by regression analysis. To assess improvement over a reference, prognostic model was assessed with the area under curve (AUC) of receiver operating characteristic (ROC) curves. All statistical tests were two-sided, except the AUC increase. RESULTS: All four risk scores (RSs) showed a statistically significant association (single-test, P < .0167) with OS or RFS in univariate models, but with HRs below 1.38 per interquartile range. Three scores were predictors of shorter RFS, one of shorter SAR. Each RS could only marginally improve an RFS or OS model with the known factors T-stage, N-stage, and microsatellite instability (MSI) status (AUC gains < 0.025 units). The pairwise interscore discordance was never high (maximal Spearman correlation = 0.563) A combined score showed a trend to higher prognostic value and higher AUC increase for OS (HR = 1.74, 95% confidence interval [CI] = 1.44 to 2.10, P < .001, AUC from 0.6918 to 0.7321) and RFS (HR = 1.56, 95% CI = 1.33 to 1.84, P < .001, AUC from 0.6723 to 0.6945) than any single score. CONCLUSIONS: The four tested gene expression-based risk scores provide prognostic information but contribute only marginally to improving models based on established risk factors. A combination of the risk scores might provide more robust information. Predictors of RFS and SAR might need to be different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detecting local differences between groups of connectomes is a great challenge in neuroimaging, because the large number of tests that have to be performed and the impact on multiplicity correction. Any available information should be exploited to increase the power of detecting true between-group effects. We present an adaptive strategy that exploits the data structure and the prior information concerning positive dependence between nodes and connections, without relying on strong assumptions. As a first step, we decompose the brain network, i.e., the connectome, into subnetworks and we apply a screening at the subnetwork level. The subnetworks are defined either according to prior knowledge or by applying a data driven algorithm. Given the results of the screening step, a filtering is performed to seek real differences at the node/connection level. The proposed strategy could be used to strongly control either the family-wise error rate or the false discovery rate. We show by means of different simulations the benefit of the proposed strategy, and we present a real application of comparing connectomes of preschool children and adolescents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program