970 resultados para State Enzyme-Kinetics
Resumo:
Natural Resource Management project developing reources and supporting best practice management for irrigated cotton and grain growers in Queensland.
Resumo:
A survey of recent developments in preparative solid state chemistry shows that, with a knowledge of structural chemistry and reactivity patterns of solids, it is possible to synthesize a variety of new solids possessing novel structures. A distinction is made between synthesis ofnew solids and synthesis of solids bynew methods. Three new routes to solid state synthesis are recognized: the precursor method, and topochemical methods involving redox and ion-exchange reactions. The low-temperature topochemical methods enable synthesis of metastable phases that are inaccessible by the high temperature route. Several illustrative examples of solid state synthesis from the recent literature are presented.
Resumo:
Syntheses of protein molecules in a cell are carried out by ribosomes.A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a Michaelis-Menten-type'' equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.
Resumo:
The inbreeding patterns and coefficient of inbreeding (F) of 3,350 new-borns in Bangalore, Karnataka were determined. A total of 29.24% were born of consanguineous marriages, F = 0.02313. Inbreeding was most common among the Hindus: 23.56% of their marriages were uncle-niece, F for the group was 0.02670.
Resumo:
Using caged guava trees in Queensland, Australia, provided with food and oviposition sites, the foraging behaviour of females of the tephritid Bactrocera tryoni was investigated in relation to hunger for protein, the presence or absence of bacteria as a source of protein, the degree of prior experience with host fruit and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or mature B. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odour of which is known to attract B. tryoni females. Three-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odourless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. It was concluded that: the 1st B. tryoni females to arrive on the fruit of a host tree and therefore inoculate the fruit with fruit-fly-type bacteria were unlikely to be sexually immature, but to be mature as a result of having earlier acquired protein elsewhere; the odour of colonies of fruit-fly-type bacteria when associated with host fruit attracted protein-hungry but not protein-fed females; and the odour of the fruit itself attracted mature females (especially experienced ones) but not immature females.
Resumo:
t is shown that three neutral molecules can form a stable trimer if one of them is in the excited state. The formation of termolecular electron donor-acceptor complexes of sequence DDA and DAA arises from charge-resonance interaction.
Resumo:
Estrogen (E) induction of riboflavin carrier protein (RCP) in the chicken oviduct and liver was investigated to compare and contrast the kinetics, hormonal specificity and modulation of its elaboration in the 2 steroid-responsive tissues. During primary stimulation, continued daily E administration to immature female chicks elicited, after an initial lag, rapid growth and RCP content of the oviduct; neither progesterone (P) nor testosterone (T) could substitute for E in this respect. Furthermore, P given along with E curtailed tissue growth and its RCP content, whereas E + T had a synergistic effect on tissue growth only. During secondary stimulation, E administration steeply enhanced both tissue weight and RCP content without any lag. Interestingly, P (but not T) could substitute for E in augmenting magnum RCP concentration to a comparable extent while a concomitant effect on tissue growth was less marked. In contrast, hepatic induction of RCP was absolutely E-specific during both primary and secondary stimulations. Secondary stimulation with either E or P of E-primed birds enhanced the rates of RCP synthesis in the oviduct relative to that of total protein, whereas in the liver only E was effective in this regard. The absolute rate of E-induced RCP synthesis in both the steroid-stimulated tissues was significantly higher than that of general protein elaboration.
Resumo:
Kinetics of the thermal decomposition of anhydrous barium zirconyl oxalate and a carbonate intermediate have been studied. Decomposition of the anhydrous oxalate, though it could be explained based on a contracting-cube model, is quite complex. Kinetics of decomposition of the intermediate carbonate Ba2Zr2O5CO3 is greatly influenced by thermal effects during its formation. (agr-t) curves are sigmoidal and obey a power law equation followed by first order decay. Presence of carbon in the vacuum-prepared carbonate has a strong deactivating effect. Decomposition of the carbonate is accompanied by growth in particle size of the product barium zirconate.
Resumo:
Abstaract is not available.
Resumo:
Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.
Resumo:
Photochemical dimerization of 7-methoxycoumarin occurs in the solid state to give high yields of a syn-head-to-tail dimer although the potentially reactive double bonds are not favourably oriented in the crystal of the monomer.
Resumo:
The research field of Business Process Management (BPM) has gradually developed as a discipline situated within the computer, management and information systems sciences. Its evolution has been shaped by its own conference series, the BPM conference. Still, as with any other academic discipline, debates accrue and persist, which target the identity as well as the quality and maturity of the BPM field. In this paper, we contribute to the debate on the identity and progress of the BPM conference research community through an analysis of the BPM conference proceedings. We develop an understanding of signs of progress of research presented at this conference, where, how, and why papers in this conference have had an impact, and the most appropriate formats for disseminating influential research in this conference. Based on our findings from this analysis, we provide conclusions about the state of the conference series and develop a set of recommendations to further develop the conference community in terms of research maturity, methodological advance, quality, impact, and progression.
Resumo:
Muscle glycogen exists in two forms: low molecular weight pro-glycogen and high molecular weight macro-glycogen. The degradation of glycogen to glucose 1 phosphate and free glucose is catalysed by glycogen phosphorylase together with glycogen debranching enzyme (GDE). The process in which glycogen is broken down via anaerobic pathways to lactate, results in the acidification of the muscles and has a great influence on meat quality. Thus, the overall aim of this thesis was to characterise the post mortem action of GDE in muscles of meat production animals (pigs, cattle and chickens). Interest was focused on the differences in GDE activity between fast twitch glycolytic muscles and slow twitch oxidative muscles. The effects of pH, temperature, RN genotype (PRKAG3 gene), and of time post mortem on GDE activity were also investigated. This thesis showed that there are differences in GDE activity between animal species and between different muscles of an animal. It was shown that in pigs and cattle, higher GDE activity and phosphorylase activity exists in the fast twitch glycolytic muscles than in slow twitch oxidative muscles of the same animal. Thus, the high activity of these enzymes enables a faster rate of glycogenolysis in glycolytic M. longissimus dorsi compared to oxidative M. masseter. In chicken muscles, the GDE activity was low compared to pig or cattle muscles. Furthermore, the GDE activity in the glycolytic M. pectoralis superficialis was lower than in more oxidative M. quadriceps femoris despite the high phosphorylase activity in the former. The relative ratios between phosphorylase and GDE activity were higher in fast twitch glycolytic muscles than in slow twitch oxidative muscles of all studied animals. This suggests that the relatively low GDE activity compared to the phosphorylase activity in fast twitch glycolytic muscles may be a protection mechanism in living muscle against a very fast pH decrease. Chilling significantly decreased GDE activity and below 15 C porcine GDE was almost inactive. The effect of pH on GDE activity was only minor at the range normally found in post mortem muscles (pH 7.4 to 5.0). The GDE activity remained level for several hours after slaughter. During the first hours post mortem, GDE activity was similar in RN- carrier pigs and in wild type pigs. However, the GDE activity declined faster in M. longissimus dorsi from wild type pigs than in the RN carrier pigs, the difference between genotypes was significant after 24 h post mortem. Pro-glycogen and macro-glycogen contents were higher, pH decrease was faster and ultimate pH was lower in RN- carrier pigs than in wild type pigs. In the RN- carriers, the prolonged high GDE activity level may enable an extended pH decrease and lower ultimate pH in their muscles. In conclusion, GDE is not the main factor determining the rate or the extent of post mortem glycogenolysis, but under certain conditions, such as in very fast chilling, the inhibition of GDE activity in meat may reduce the rate of pH decrease and result in higher ultimate pH. The rate and extent of pH decrease affects several meat quality traits.