982 resultados para Spinal Injury
Resumo:
Robot-mediated neurorehabilitation is a rapidly advancing field that seeks to use advances in robotics, virtual realities, and haptic interfaces, coupled with theories in neuroscience and rehabilitation to define new methods for treating neurological injuries such as stroke, spinal cord injury, and traumatic brain injury. The field is nascent and much work is needed to identify efficient hardware, software, and control system designs alongside the most effective methods for delivering treatment in home and hospital settings. This paper identifies the need for robots in neurorehabilitation and identifies important goals that will allow this field to advance.
Resumo:
The role of protein kinase C (PKC) activation in ischemic preconditioning remains controversial. Since diacylglycerol is the endogenous activator of PKC and as such might be expected cardioprotective, we have investigated whether: (i) the diacylglycerol analog 1,2-dioctanoyl-sn-glycerol (DOG) can protect against injury during ischemia and reperfusion; (ii) any effect is mediated via PKC activation; and (iii) the outcome is influenced by the time of administration. Isolated rat hearts were perfused with buffer at 37°C and paced at 400 bpm. In Study 1, hearts (n=6/group) were subjected to one of the following: (1) 36 min aerobic perfusion (controls); (2) 20 min aerobic perfusion plus ischemic preconditioning (3 min ischemia/3 min reperfusion+5 min ischemia/5 min reperfusion); (3) aerobic perfusion with buffer containing DOG (10 μM) given as a substitute for ischemic preconditioning; (4) aerobic perfusion with DOG (10 μM) during the last 2 min of aerobic perfusion. All hearts then were subjected to 35 min of global ischemia and 40 min reperfusion. A further group (5) were perfused with DOG (10 μM) for the first 2 min of reperfusion. Ischemic preconditioning improved postischemic recovery of LVDP from 24±3% in controls to 71±2% (P<0.05). Recovery of LVDP also was enhanced by DOG when given just before ischemia (54±4%), however, DOG had no effect on the recovery of LVDP when used as a substitute for ischemic preconditioning (22±5%) or when given during reperfusion (29±6%). In Study 2, the first four groups of study were repeated (n=4–5/group) without imposing the periods of ischemia and reperfusion, instead hearts were taken for the measurement of PKC activity (pmol/min/mg protein±SEM). PKC activity after 36 min in groups (1), (2), (3) and (4) was: 332±102, 299±63, 521±144, and 340±113 and the membrane:cytosolic PKC activity ratio was: 5.6±1.5, 5.3±1.8, 6.6±2.7, and 3.9±2.1 (P=NS in each instance). In conclusion, DOG is cardioprotective but under the conditions of the present study is less cardioprotective than ischemic preconditioning, furthermore the protection does not appear to necessitate PKC activation prior to ischemia.
Resumo:
The olive oil polyphenol, hydroxytyrosol (HT), is believed to be capable of exerting protection against oxidative kidney injury. In this study we have investigated the ability of HT and its O-methylated metabolite, homovanillic alcohol (HVA) to protect renal cells against oxidative damage induced by hydrogen peroxide. We show that both compounds were capable of inhibiting hydrogen peroxide-induced kidney cell injury via an ability to interact with both MAP kinase and PI3 kinase signalling pathways, albeit at different concentrations. HT strongly inhibited death and prevented peroxide-induced increases in ERK1/2 and JNK1/2/3 phosphorylation at 0.3 microM, whilst HVA was effective at 10 microM. At similar concentrations, both compounds also prevented peroxide-induced reductions in Akt phosphorylation. We suggest that one potential protective effect exerted by olive oil polyphenols against oxidative kidney cell injury may be attributed to the interactions of HT and HVA with these important intracellular signalling pathways.
Resumo:
This paper presents a virtual headstick system as an alternative to the conventional passive headstick for persons with limited upper extremity function. The system is composed of a pair of kinematically dissimilar master-slave robots with the master robot being operated by the user's head. At the remote site, the end-effector of the slave robot moves as if it were at the tip of an imaginary headstick attached to the user's head. A unique feature of this system is that through force-reflection, the virtual headstick provides the user with proprioceptive information as in a conventional headstick, but with an augmentation of workspace volume and additional mechanical power. This paper describes the test-bed development, system identification, bilateral control implementation, and system performance evaluation.
Resumo:
RATIONALE: Children with congenital heart disease are at risk of gut barrier dysfunction and translocation of gut bacterial antigens into the bloodstream. This may contribute to inflammatory activation and organ dysfunction postoperatively. OBJECTIVES: To investigate the role of intestinal injury and endotoxemia in the pathogenesis of organ dysfunction after surgery for congenital heart disease. METHODS: We analyzed blood levels of intestinal fatty acid binding protein and endotoxin (endotoxin activity assay) alongside global transcriptomic profiling and assays of monocyte endotoxin receptor expression in children undergoing surgery for congenital heart disease. MEASUREMENTS AND MAIN RESULTS: Levels of intestinal fatty acid binding protein and endotoxin were greater in children with duct-dependent cardiac lesions. Endotoxemia was associated with severity of vital organ dysfunction and intensive care stay. We identified activation of pathogen-sensing, antigen-processing, and immune-suppressing pathways at the genomic level postoperatively and down-regulation of pathogen-sensing receptors on circulating immune cells. CONCLUSIONS: Children undergoing surgery for congenital heart disease are at increased risk of intestinal mucosal injury and endotoxemia. Endotoxin activity correlates with a number of outcome variables in this population, and may be used to guide the use of gut-protective strategies.
Resumo:
TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.
Resumo:
Although neurokinin 1 receptor antagonists prevent ethanol (EtOH)-induced gastric lesions, the mechanisms by which EtOH releases substance P (SP) and SP damages the mucosa are unknown. We hypothesized that EtOH activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to release SP, which stimulates epithelial neurokinin 1 receptors to generate damaging reactive oxygen species (ROS). SP release was assayed in the mouse stomach, ROS were detected using dichlorofluorescein diacetate, and neurokinin 1 receptors were localized by immunofluorescence. EtOH-induced SP release was prevented by TRPV1 antagonism. High dose EtOH caused lesions, and TRPV1 or neurokinin 1 receptor antagonism and neurokinin 1 receptor deletion inhibited lesion formation. Coadministration of low, innocuous doses of EtOH and SP caused lesions by a TRPV1-independent but neurokinin 1 receptor-dependent process. EtOH, capsaicin, and SP stimulated generation of ROS by superficial gastric epithelial cells expressing neurokinin 1 receptors by a neurokinin 1 receptor-dependent mechanism. ROS scavengers prevented lesions induced by a high EtOH dose or a low EtOH dose plus SP. Gastric lesions are caused by an initial detrimental effect of EtOH, which is damaging only if associated with TRPV1 activation, SP release from sensory nerves, stimulation of neurokinin 1 receptors on epithelial cells, and ROS generation.
Resumo:
Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.
Resumo:
By placing axons into polymeric micro-channels hosting embedded electrodes the extracellular amplitude of action potentials is greatly increased, allowing for robust recording and noise suppression. We are developing such an electrode interface to record electrical activity from bladder afferents to restore bladder control in patients suffering from spinal cord injury. Here we describe our microchannel electrode interface in terms of design, microfabrication and electrode characteristics and report on in vivo bladder function after implantation of teased dorsal rootlets within microchannels.
Resumo:
Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.
Resumo:
The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress pro-neuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.
Resumo:
The chapter describes development of care bundle documentation, through an iterative, user-centred design process, to support the recognition and treatment of acute kidney injury (AKI). The chapter details stages of user and stakeholder consultation, employed to develop a design response that was sensitive to user experience and need, culminating in simulation testing of a near final prototype. The development of supplementary awareness-raising materials, relating to the main care bundle tool is also discussed. This information design response to a complex clinical decision-making process is contrasted to other approaches to promoting AKI care. The need for different but related approaches to the working tool itself and the tool’s communication are discussed. More general recommendations are made for the development of communication tools to support complex clinical processes.